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Abstract

Advances made during the last decades in the micro�uidic �eld have drawn at-
tention to the need of an increased theoretical and computational e�ort. This
thesis combines a theoretical study of two-phase and three-phase �ows with nu-
merical simulations of actual bubbles in microstructures.

The theoretical understanding of e�ects related to surface tension such as
contact angle, wetting phenomenon, moving bubbles, and the so-called clogging
pressure is essential. Moreover the speci�c impact of di�erent channel geome-
tries on the behavior of bubbles is studied. A Matlab program developed by
the author and the commercial CFD-ACE+ software are utilized for that pur-
pose.

During the thesis work a great amount of insight into CFD-ACE+ is gained.
The free surface handling VOF-method (Volume-Of-Fluid) is investigated thor-
oughly in several examples. Shortcomings regarding the free surface module are
pinpointed and commented. The properties of two types of channel contractions,
the sudden contraction and the tapered channel, are compared. The tapered
channel geometry exhibits many advantages. Based on the insights gained a
novel bubble trap is developed and simulated.

The thesis work both pinpoints several important geometric features hav-
ing an in�uence on bubble motion in microchannels and identi�es lacks in the
numerical implementation of boundary conditions at contact lines.
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Resumé

De fremskridt, der er gjort inden for mikro�uidikken i de sidste årtier, har hen-
ledt opmærksomheden på, at der er behov for en øget indsats på det teoretiske
og simuleringsmæssige område. Denne afhandling kombinerer en teoretisk un-
dersøgelse af to- og trefase strømninger med numeriske simuleringer af faktiske
bobler i mikrostrukturer.

Det er vigtigt at få en teoretisk forståelse af over�adespændingse�ekter som
f.eks. kontaktvinkel, �wetting�-fænomener, bobler i bevægelse og de såkaldte
�clogging�-tryk (tilstopningstryk). Desuden er forskellige kanalgeometriers særlige
ind�ydelse på, hvorledes bobler opfører sig i kanaler, blevet undersøgt. Hertil
er anvendt et af forfatteren udviklet Matlab-program samt den kommercielle
CFD-ACE+ programpakke.

Under projektforløbet er der erhvervet stor erfaring med CFD-ACE+ .
Gennem �ere eksempler er VOF-metoden (Volume-Of-Fluid) for frie over�ader
blevet indgående undersøgt, og mangler er herved blevet fundet og kommenteret.
Egenskaberne ved to typer kanalindsnævringer, den pludselige indsnævring og
den tilspidsede kanal, er blevet sammenlignet. Herved påvises de mange fordele,
der er forbundet med geometrien for den tilspidsede kanal. På baggrund af den
opnåede viden er en ny og innovativ geometri til at fange bobler blevet udviklet
og simuleret.

Mange vigtige geometriske egenskaber, der har ind�ydelse på boblers dy-
namik i mikrokanaler, er blevet påvist under arbejdet med projektet, ligesom
der er fundet mangler ved den numeriske implementering af randbetingelser ved
berøringslinjer.
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Chapter 1

Introduction

In the last decades great innovations in the micro�uidic area have been made.
Micro�uidic is hydrodynamic at micrometer scale. A great amount of work has
been put into the development of di�erent components such as micropumps, mi-
crovalves, mixing chambers, and chemical reaction chambers. An integration of
these components makes up the so-called �lab-on-a-chip� concept which is one of
the driving ideas behind the research. The miniaturization process is expected to
revolutionize the chemical, biochemical, and medical industry. Complete chemi-
cal and biological analyzes will be carried out in the lab-on-a-chip systems, also
called Micro Total Analysis Systems (µTAS).

The micro�uidic systems will most certainly make paramount changes in
the way laboratories work: smaller, cheaper, and fully automated devices will
perform faster and more accurate measurements than today. The application
prospects are wide. From easy environmental monitoring to medical monitor-
ing of patients in geographically remote areas. The micro�uidic �eld is vast,
in full expansion and the subject of increasing investments from industry. The
development and fabrication of integrated micro�uidic devices are a true mul-
tidisciplinary �eld: process specialists, chemists, biologists, material scientists,
surface physics specialists, and micro�uidic specialists all play key roles in the
process.

In the history of micro�uidics bubbles have often been rather a handicap
than an asset. The interfacial surface tension e�ects, associated with the pres-
ence of bubbles, introduce a unique type of force that scales directly to length.
At the present typical micrometer scale and operating �ow regime the surface
tension forces dominate most other forces, such as gravity, pressure, and viscous
drag. As the surface tension e�ects are directly related to lengths the actual
geometry of devices is cardinal. Gas bubbles may get stuck in sensitive places
and clog the �ow completely eliminating the functionality of the microdevice. In
the recent years the design of micro�uidic devices making use of surface tension
e�ects has been attempted, [22, 49, 50].

Micro�uidic devices are already at a stage where a further e�cient devel-
opment requires the use of simulation capabilities. Advances in computational
�uid dynamics (CFD) enable a better and less expensive design process. An
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Chap. 1 Introduction

e�ort in the CFD �eld should nevertheless be made together with a thorough
theoretical study of the given subject. In relation to the bubble phenomenon
great progress in the numerical handling of the interface has been made in the
last decade. The increased computational power of personal computers and the
development of commercial CFD software provide research facilities with easy
access to good simulation capabilities.

The bubble phenomenon is in this thesis studied within the philosophy of
a joined computational and theoretical investigation. A thorough analysis of
classical theory for surface tension and multi-phase �ows, including the Young-
Laplace equation and the contact angle phenomenon, is carried out. Newer mi-
croscopic theories are also introduced. The manifestation of the interfacial sur-
face tension related scale e�ects �capillarity� are studied and exempli�ed. The
theory is applied to two speci�c geometries of contracting microchannels. In this
context a Matlab program is implemented. After the theoretical investigation
the capabilities of the commercial CFD software CFD-ACE+ are investigated
and several practical examples are studied. The CFD-ACE+ package utilizes
the so-called volume-of-�uid (VOF) method to handle the free surface inter-
face boundary. The VOF method has undergone a drastic evolution since its
initial implementation in the late seventies and is today one of the foremost
utilized techniques to handle free surfaces, Rider and Kothe [43]. Both two and
three-dimensional geometries are studied, in both cases the produced data is
compared with theory and discussed in detail. The speci�c report structure is
as follows:

• Basic Fluid Dynamics (Chap. 2)
A discussion of the continuum approximation and presentation of the gov-
erning equations of �uid dynamics. The aspects of micro�uidics are taken
into account.

• Surface Tension (Chap. 3)
The surface tension phenomenon is presented in great detail. Both an
energy and a force description are presented and the central Young-Laplace
equation is derived.

• Contact Angle (Chap. 4)
The contact angle at gas-liquid-solid contact line is presented. Both a
classical and a molecular description are given. The dependence of the
contact angle with respect to several parameters is further investigated.

• Capillarity and Examples (Chap. 5)
The phenomena related to surface tension and contact angle: capillarity
are here presented. The aiming is to describe the clogging of microchan-
nels by bubbles and movement of bubbles in microchannels. The clogging
pressure concept is introduced.

• Bubbles in General (Chap. 6)
This chapter introduces some general notions about the formation of bub-
bles. Emphasis is put on pressure e�ects.

• A Short Review of Microchannels (Chap. 7)
The purpose of chapter 7 is to relate the presented physical theories to
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actual micro�uidic devices. Scales and �ow regimes are presented in view
of the simulations made in chapter 9 and 10.

• Commercial Software (Chap. 8)
The commercial simulation software package CFD-ACE+ is presented and
tested on three test cases. Special focus is put on the properties of the free
surface handling VOF-method.

• 2D and 3D Simulations (Chap. 9 and 10)
Simulations of two-phase �ows in both 2D and 3D geometries are �nally
made. The results are compared with theory and discussed thoroughly. An
innovative method to handle the bubble problem is proposed and analyzed:
the so-called passive bubble trap.

Through the work with the thesis emphasis was put on the close relation
between theoretical physics and simulations. The theoretical study is motivated
by the later CFD application and the intent to investigate the capabilities of the
CFD-ACE+ package. Simulation results should always be scrutinized in detail.
The building up of knowledge enabling an analysis of a micro�uidic system
eventually based on certain global design rules is the �nal goal. This thesis
presents some of the problematic geometries, but also a novel bubble trap device
designed according to a few simple, but powerful principles.
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Chapter 2

Basic Fluid Dynamics

To initiate the physics discussions of the next chapters some basic �uid dynam-
ics are �rst shortly discussed. The following discussion is quite general, however,
certain speci�cs related to micro�uidics are detailed.

The continuum hypothesis is �rstly discussed. Secondly, the governing equa-
tions for a general Newtonian liquid are presented. The more relevant case of
incompressible �uids is then presented and at last di�erent types of �ow are
discussed in relation to the Reynolds number Re.

2.1 The Continuum Hypothesis
In this thesis all �uids discussed are Newtonian and are generally treated as
continuous isotropic matter (mean molecular �elds). The continuum descrip-
tion could however be questioned because of the small length scales present in
micro�uidics.

A way of de�ning deviations from the continuum description is through the
Knudsen number

Kn =
λ

`
, (2.1)

where λ is the mean-free-path of the molecules and ` is a characteristic length
scale. ` should be chosen to include gradients in the velocity �eld. For liquids
λ is approximately the intermolecular length Lmol (bond length). The volume
occupied by one molecule L3

mol is easily approximated, yielding

Lmol =
(

Mmol
ρNA

)1/3

, (2.2)

where ρ is the density, Mmol the molar mass, and NA is Avogado's number.
For water λ = Lmol ≈ 0.31 nm. The Knudsen number identi�es the continuum
regimes and the governing equations.1

1For 0 < Kn < 0.01 the continuum approximation is applicable and the Navier-Stokes
equation usable, this regime is generally in use in micro�uidic �ows. For 0.01 < Kn < 0.1
the Navier-Stokes equation is still applicable however with use of so-called slip conditions to
account for microscopic phenomenon at solid boundaries.
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A more intuitive way of justifying the use of the continuum approximation
is through a precision criterion. At su�ciently high precision �uids are never
continuous. The concept of a continuous velocity �eld does, e.g., only makes
sense for small changes in the center of mass, of a small characteristic volume,
due to random �uctuations in velocities. Another example could be to determine
the mass density to a certain relative precision r.

• Example
Determining the mass density ρ = mN/V to the relative precision r, with
N the number of molecules of mass m in a small volume V . There are only
�uctuations in the relative number of molecules ∆N due to random walk
which is typically ∆N ≈ √

N . For r = 1% the requirement ∆N/N < r
yields N > 1/r2 = 104. The given volume hence needing dimensions
` > 22Lmol. For the case of water ` > 7 nm which is a factor 103 smaller
than the geometric dimensions of the micro�uidic systems analyzed in this
thesis.

Liquid-gas interfaces are of prime interest in the present thesis. Because a
liquid-gas interface only has a thickness comparable to the molecular scale Lmol
it is reasonable to describe the involved �uids (liquid and gas) as continuums,
Evans [30]. The interface is characterized through a discontinues change from
one isotropic continuum to another. In certain cases however the length scales
involved, in the physical descriptions, compromise the continuum hypothesis.
These are in the following chapters clearly mentioned. This is, e.g., the case
in Sec. 4.4 where small length scales are considered near moving triple points
(gas-liquid-solid contact lines).

2.2 Fluids in General
The complete system of equations for the motion of isotropic Newtonian �uids,
both liquids and gases, is presented in the following. Each equation is stated
and commented individually.

Momentum
The most general momentum equation covering all aspects of �uid dynamics
is the Navier-Stokes equation. It is essentially obtained by applying Newton's
second law to an in�nitesimal �uid element

ρ
du(x(t), t)

dt
=

∑
volume and surface forces (2.3)

yielding

ρ

(
∂u
∂t

+ (u ·∇)u
)

= −∇P + µ∇2u +
1
3
µ∇(∇ · u) + f . (2.4)

that is conservation of momentum. Where u = (u, v, w) is the velocity vector,
P the dynamic pressure, ρ the density, µ the dynamic viscosity, and f a volume
force (body force).
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Continuity
The requirement of global conservation of mass reduces locally, by the use of
Gauss' theorem, to

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.5)

which is the continuity equation, i.e., the local continuity equation for mass.

Dynamic Pressure and Equation of State
In the Navier-Stokes equation Eq. (2.4) the pressure P is the so-called dynamic
pressure. It originates from the speci�c nature of the stress tensor. In Newtonian
�uids it reduces to

P = P0 + ζ∇ · u. (2.6)
Where P0 is the hydrostatic pressure in the �uid for u = 0 and ζ is the bulk
viscosity. ζ is analogue to the bulk modulus for elastic materials and is a measure
of incompressibility, Lautrup [12]. To complete Eq. (2.6) an equation of state

P0 = P0(ρ), (2.7)

relating the equilibrium pressure P0 to the the �uid motion, is necessary.

Constitutive Equation for Viscosity
Fluids with a linear relationship between stress and rate of strain (deformation)
are called Newtonian �uids. The speci�c relation is expressed in a constitutive
equation specifying the material properties of the liquid through the stress-strain
relation: Newtonian �uids give in to shear stress and �ow in such a way that
shear is eliminated in equilibrium.

• Example
In the 2D shear �ow illustrated in Fig. 2.1, the relation between stress and

x

y

tu yx

V0

Figure 2.1: 2D shear
�ow: upper plate is mov-
ing at speed V0 and the
lover is stationary.

strain is called Newton's formula

τyx = µ

(
∂u

∂y

)
. (2.8)

Where τyx is the stress in the x-direction on a plane with normal in the
y-direction. The coe�cient of proportionality µ is the dynamic viscosity.
Maxwell interpreted Eq. (2.8) kinematically as a vertical momentum in-
terchange.

At room temperature the linear nature of the Newtonian �uids is a very good
approximation for, e.g., pure water. The linear relation breaks down for some
suspensions and polymer solutions. The reason for non-Newtonian behavior is
found on a microscopic level, Probstein [2]. Further details on the �ow equations
are found in several very good books: Fung [45], Lautrup [12] or Fredsøe [4].

2.3 Incompressible Fluids
The above set of governing equations are very general. However, in most cases
assuming the �uid to be incompressible is a good approximation. In an in-
compressible �uid the density ρ0 is constant. This fact reduces the governing
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equations to

ρ0

(
∂u
∂t

+ (u ·∇)u
)

= −∇P0 + µ∇2u + f (2.9a)

∇ · u = 0. (2.9b)

The �rst equation being the momentum equation and the second the continuity
equation. The constitutive equation, in tensor notation, simpli�es likewise to

τij = µ(∇iuj +∇jui). (2.10)

Which is a general form of Newton's formula. The stress tensor σij being

σij = −P0δij + τij = −P0δij + µ(∇iuj +∇jui). (2.11)

2.4 Types of Flow
In the Navier-Stokes equation for incompressible �uids Eq. (2.9a) the di�erent
terms are the instantaneous acceleration ∂u/∂t, the convective or inertia term
(u ·∇)u, the pressure gradient −∇P0, the shear viscosity term µ∇2u, and the
body force f .2 The most interesting �ow patterns arise because of the interplay
between inertia and viscosity. The �rst tries to continue a �uid movement when
initiated and the second acts as a break. Though in many cases only one of the
terms is of importance. The ratio between the inertia and viscosity is given by
the Reynolds number

Re =
inertia forces
viscous forces ≈

|ρ(u ·∇)u|
|µ∇2u| ≈ ρU2/δ

µU/δ2
=

ρUδ

µ
(2.12)

where U is the characteristic velocity change over the the characteristic length
scale δ, normally determined by geometry.

At high Reynolds numbers (Re À 1) inertia is dominant and Eq. (2.9a)
e�ectively reduces to Euler's equation describing ideal �ow (non-viscous). At low
Reynolds numbers (Re ¿ 1) Eq. (2.9a) reduces to the creeping �ow equation.

The Reynolds number also characterizes whether a �ow is turbulent or lam-
inar. If the viscous forces are of importance the �ow is popularly said to be
more sluggish, whereas it is more lively for negligible viscous e�ects. For a given
geometry a stability analysis will reveal at which Reynolds numbers the �ow
pattern varies. Two �ows having the same Reynolds number are said to be dy-
namically equivalent as they exhibit the same stability (laminar or turbulent).3

2The form of the instantaneous acceleration and inertia terms result from the eulerian
viewpoint, i.e., �xed in space and not following a liquid element. The terms follow naturally
from a mathematical point of view. However, the inertia term has a physical interpretation.
It corresponds to the inertial force exerted by surrounding �uid on the given observed �uid
element.

3A rearrangement of the governing equations yield an equation for transport of rota-
tion/vorticity. By use of perturbation theory an energy equation for a perturbation in the
rotation can be derived (time variation, production, and energy loss due to viscous work).
The Reynolds number appears as determining the amount of energy loss, i.e., if the perturba-
tion will decay.
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Micro�uidic �ows are laminar, Gravesen et al. [48] and Chap. 7. Creeping
�ow regime may also appear as the Reynolds numbers may be very small. The
creeping �ow equation is

ρ0
∂u
∂t

= −∇P0 + µ∇2u. (2.13)

where the body forces have been neglected. The exact nature of the �ow is
nevertheless geometrically dependent.
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Chapter 3

Surface Tension

Surface tension is the energy per area of an interface between two phases. It gives
rise to many physical phenomena and fascinating behaviors of �uids. Many of
these are every day occurrences: the formation of droplets, the curvature of the
liquid surface in a glass of water, and the formation of beautiful soap �lms. The
physics and chemistry behind the phenomena are not understood completely.
This does not mean the phenomena are not applied - they are in many cases as,
e.g., in the well known ink-jet printers.

In the following �rst section two descriptions of the surface tension, σ,
are presented1. The assumptions and physical arguments are �rstly presented
through a force description and secondly through an energy description. In the
second section, an important consequence of the existence of surface tension,
namely, the curvature of interfaces, is presented and the essential Young-Laplace
equation is derived. The third section treats the e�ect of surface tension gradi-
ents the so-called Marangoni e�ect. Then, in the fourth section surface tension
data is brie�y presented. The �fth section introduces an alternative energy con-
sideration through the Gibs' free energy. Finally the last section introduce some
dimensionless numbers used through out the thesis.

3.1 Energy and Force Descriptions
Inter Molecular Forces
At a liquid-gas interface the molecules in the liquid are bound by the van der
Waals forces, where the gas molecules are relatively free to move. At the liquid
surface the molecules are mainly attracted inward and to the sides. Of course
some liquid molecules evaporate, but it is a small fraction. Mostly there is no
outward attraction to balance the inward force. The surface molecules are thus

F

l

Figure 3.1: A force F
acting on the border
length ` of a stretched
membrane.

attracted inward normal to the surface and the surface tends to curve. This
results in the surface acting like a stretched membrane, with a tension σ = F/`
along the edge, i.e., a force per unit length tending to decrease the surface area,
Fig 3.1.

1In European literature surface tension is labelled σ where as in American γ is often used.
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Energy and Work
An energy description of the surface tension originates from the fact that the
molecules at the interface (liquid-gas) are attracted by less neighboring molecules
than those in the interior of the liquid. The attraction energy at the interface
must hence be less than that of an interior molecule. The molecules at the sur-
face thus have the highest energy. Work is required to form surface area that is
to move molecules from the interior to the surface interface2. As the total free
energy of the system minimizes, the surface area tends to minimize. This fact
leads to the other de�nition of the surface tension, namely, that σ is the energy
per unit area that tends to minimize area (contract the surface) hence

σ =
(

∂F

∂A
)

T,V

, (3.1)

for constant temperature T and volume V . A is the surface area and F is the
Helmholtz's free energy also known as the work function

F = F (T, V,N) = U − TS (3.2)

de�ned in terms of the total internal energy U , the temperature T , and the
entropy S. The independent variables of F are temperature T , volume V , and
number of particles N .3 The TS term corresponds to the energy not available to
achieve uniform motion in the surroundings, i.e., the entropical loss. F is hence
the energy available for conversion into work.

For constant temperature and volume Eq. (3.1) simply states that for a given
surface tension σ, dF will decrease with decreasing dA. The surface free energy
will tend to a minimum. The surface tension is thus the Helmholtz free energy
per area, provided the viscosity of the liquid is not too high (Probstein Ch. 10
[2]).4 From the de�nition, Eq. (3.2), it follows that surface tension decreases
with increasing temperature, i.e.,

∂σ

∂T
=

(
∂2F

∂T∂A
)

V

< 0. (3.3)

A thought experiment justifying the above expression is presented in Appendix F.
See the later Sec. 2.6 for further discussion of the surface tension in regard to
thermodynamical potentials.

Example
To illustrate the di�erent approaches, but also the agreement of the two previous
descriptions consider the following instructive example.

In the previous paragraphs σ is treated as an energy per unit area and as
a force per unit length. Consider a soap �lm stretched over a wire frame with
a movable end, see Fig. (3.2). When moving the end dx in the direction of the

2The molecules in the bulk of the liquid are lying in a deeper potential well than those at
the interface.

3In the following it is given that the number of particles N is held constant. The small
number evaporating from the surface is neglected.

4In a liquid with high viscosity the molecules have di�culty moving around. They have a
higher activation energy, that is, a smaller probability to move around. A considerable fraction
of the internal free energy available for work is hence associated with movement of molecules
within the bulk of the liquid. The surface tension cannot minimize the surface area.
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l

dx

Figure 3.2: Experimental set-up: a soap �lm in a wire frame where one end can move.
Surface tension may be illustrated as work and as a force.

arrow experiments show that a force is acting in the opposite direction. The
work W made by extending the membrane dx is

W = σldx. (3.4)
The work could equally have been expressed as

W = σdA, with dA = ldx. (3.5)
In Eq. (3.4) σ is given as a force per length ([σ] = N m−1 = kg s−2) whereas it
in Eq. (3.5) is an energy per area ([σ] = J m−2 = kg s−2).

The present example is meant to illustrate how both descriptions yield an
identical solution. The energy description is the more describing and useful one,
as one of the key aspects of interfaces or surfaces is to minimize surface energy
hence area. This naturally leads to the next discussion of the Young-Laplace
equation.

3.2 The Young-Laplace Equation
Because of the existence of surface tension, an interface will have a tendency
to curve. The curvature results from the minimization of area driven by the
minimization of free surface energy. This curvature results in a pressure dif-
ference across the interface ∆Pi (the highest pressure on the concave side). An
expression for the pressure di�erence is found by considering the work (pressure-
volume) needed to expand a curved surface. Notice that a surface in R3 is char-
acterized by two principal curvatures (Millman and Parker [5] and Appendix A)
or radii of curvature R1 and R2. For a sphere the radii are equal, R1 = R2.

In the following a small test section of an arbitrary surface depicted in
Fig. 3.3 is utilized to �nd an expression for the mentioned pressure di�erence.
The curvatures are assumed locally constant.

When displacing the surface outwards by dz the resulting change in surface
area is:

dA = (x + dx)(y + dy)− xy = xdy + ydx.

The corresponding work made in stretching the surface with surface tension σ
is hence

dW = σdA = σ(xdy + ydx). (3.6)
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R

R

1

2

y

y y+d

x x
x

+
d

dz

Figure 3.3: Di�erential expansion of an interface with locally constant curvatures
1/R1 and 1/R2.

The work is also delivered as force times distance: counteracting a pressure
di�erence ∆Pi across the surface area xy moved the distance dz hence

dW = ∆Pi x y dz. (3.7)

A simple geometrical consideration on similar triangles yields

x + dx

R1 + dz
=

x

R1
⇒ dx =

x

R1
dz

(3.8)
y + dy

R2 + dz
=

y

R2
⇒ dy =

y

R2
dz

For the system to be in equilibrium the work made by the surface tension,
Eq. (3.6), and the work made by the pressure, Eq. (3.7), must be equal. Equating
and using the expressions Eq. (3.8) result in the Young-Laplace equation

∆Pi = σ

(
1

R1
+

1
R2

)
= σ2H = σ(−∇ · n̂). (3.9)

Where H is the mean curvature see Eq. (A.5) in Appendix A. The last of the
three identical formulations de�nes the curvature through the divergence the
surface unit normal: −∇ · n̂.

The above equation is essential in describing all capillary and especially
small bubble phenomena. ∆Pi is the pressure di�erence required to sustain
the curvature resulting from the surface tension. ∆Pi is de�ned positive and
is thus the pressure at the convex side minus the pressure at the concave. An
extended discussion is given Sec. 4.6. If no external forces are present a static

14 Bubbles in Microchannels



Chap. 3 Surface Tension Sec. 3.3 Marangoni E�ect

interface has the same mean curvature at every point. If this was not the case
di�erent pressures would appear and deform the interface. In zero gravity a drop
is spherical whereas it is deformed by gravity on earth.

On a plane surface, e.g., a large puddle, the pressure di�erence is obviously
zero as R1 → ∞ and R2 → ∞.5 Note that for large scale phenomena, such
as ocean waves ∆Pi resulting from the surface tension is negligible as R1 and
R2 tend to in�nity. Conversely ∆Pi becomes very important at small scales
as R1 and R2 may tend to zero. These length scale e�ects are important in
micro�uidics and are amply discussed in the rest of the thesis.

3.3 Marangoni E�ect
The surface tension is not in general a spatially constant physical quantity on,
say, a liquid-gas interface. Spatial variations in the surface tension may exist
and result in additional shear stresses, that is, tractive forces on the adjoint
bulk liquid. This gives rise to �uid motions in the bulk liquid. These motions
induced by gradients in the surface tension are called Marangoni e�ects.

The spatial variations of σ may arise from variations in di�erent quantities
such as the surface temperature, concentrations of surface active additives (sur-
factants), or in electric charge of surface potentials, Probstein [2]. An important
e�ect of surfactants is that they may have strong e�ects on the pressure drop
necessary to push a bubble through a �ne capillary. This is further commented
in Chap. 5. The in�uence of electric �elds on the surface tension is, e.g., used
in pumping devices, Matsumoto and Colgate [22].

As mentioned the surface tension variation along an interface creates a tan-
gential force per unit area, fs, a tangential stress or shear stress,

fs = ∇sσ (3.10)

where ∇s is the surface gradient. Note that the positive sign on ∇sσ indicates
that the liquid on/in the interface will tend to move from areas with low surface
tension to areas with high surface tension. On Fig. 3.4 areas of high and low
surface tension are depicted. As the surface tension represents the tendency to
reduce area there must be a net surface tangential stress from the low to the
high surface tension regions.

s

s

high

low

fs

Figure 3.4: Areas of low and high surface tension are illustrated by small and large
arrows, respectively. They induce a net tangential stress, the Marangoni e�ect.

Newton's third law requires that stress vectors are continuous across bound-
aries. Both normal and tangential components. Surface tension however gives

5The pressure drop is zero as H = 0, this is the case as a plane is a special minimal surface.
A minimal surfaces is a surface having H = 0. It also has the property of locally minimizing
area, for further details see Osserman [19].
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rise to discontinuous jumps across an interface: (1) The Young-Laplace equation
describes the jump in pressure (normal stress), and (2) the Marangoni e�ects
may give rise to jumps in the shear stress (tangential stress) and hence cre-
ate forces in the bulk liquids, Lautrup [12]. A simple example regarding the
tangential stress is given in Appendix G.

3.4 Experimental Data
Data for the liquid-vapor surface tension, σ, at di�erent temperatures is pre-
sented in Table. 3.1.

Liquid T/oC σ/(mJ m−2)

Water 20 72.94
21.5 72.75
25 72.13

Organics:
Benzerne 20 28.88
Methanole 20 22.50
Blood 55.5-61.2
Metals:
Hg 20 486.5

25 485.5
30 484.5

Table 3.1: Values of liquid-vapor interface surface tensions (Adamson and Gast [1]).
σ for water at 20 oC is given as 72.88mJ m−2 in Probstein [2], hence variations exist
in literature.

3.5 More Thermodynamics: Gibbs' Free Energy
In the following some thermodynamical considerations regarding the surface
tension are made. They lead to an expression for the surface energy, the speci�c
heat, and some semi empirical expressions. The surface tension has previously
been de�ned in terms of the thermodynamical potential the Helmholtz free
energy F as

σ =
(

∂F

∂A
)

T,V

. (3.11)

The di�erential form of the Helmholtz free energy is
dF = −SdT − PdV. (3.12)

In that context F is constant for constant volume V and temperature T . F ≡
F (V, T ) so the useful potential to use when discussing processes at constant
volume and temperature.6

6Formally F ≡ F (V, T, N) and G ≡ G(P, T, N) where N is the number of particles. So
that dF = −SdT − PdV + µcdN where µc is the chemical potential. The thermodynamical
potentials may also be given per mole so that dN = 0.
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Another way of de�ning the surface tension is in terms of the Gibbs' free
energy G ≡ G(P, T ) de�ned as

G = F + PV = H − TS (3.13)

where H = U + PV is the enthalpy. In di�erential form G is given as follows
(using total derivation),

dG = dH − TdS − SdT = V dP − SdT (3.14)

as dU = TdS − PdV (the �rst law of thermodynamics). For constant pressure
and temperature Eq. (3.13) yields

dG = 0. (3.15)

In terms of work the Gibbs free energy is the value of the maximal amount of
non-expansion work7 that can be made in a system of constant pressure and
temperature. Take, e.g., a drop of liquid with a given volume and temperature.
The surface tension will deform the surface to minimize the free surface energy,
i.e., a non-expansion work. In this regard the surface tension is hence also de�ned
as

Gs = σ =
(

∂G

∂A
)

T,P

. (3.16)

the su�x s designates surface quantities. For constant volume (dV = 0) the
surface entropy is readily found from Eq. (3.14) and Eq. (3.16) as

(
∂Gs

∂T

)

P

=
∂σ

∂T
= −Ss. (3.17)

Finally the total surface enthalpy per surface area is found from Eq. (3.13) as

Hs = Gs + TSs, (3.18)

often (Adamson and Gast [1], and Both and Christiansen [8]) the surface en-
thalpy Hs is a good approximation for the total surface energy Es hence using
Eq. (3.16) and Eq. (3.17) yields8

Es ' Hs = σ − T
∂σ

∂T
. (3.19)

The total surface energy Es is in general greater than the Gibbs' free surface
energy. Moreover it is the quantity which is easiest to relate to microscopic
models. From the total surface energy the surface speci�c heat capacity Cs

readily follows
Cs =

∂Es

∂T
= −T

∂2σ

∂T 2
, (3.20)

Cs
P and Cs

V are rarely distinguished as follows from Eq. (3.19).
From Eq. (3.17) it follows that the surface tension decreases with increasing

temperature (as S ≥ 0). Experiments show that σ decreases in a nearly linear
7Expansion work is the pressure volume work: dWexp = −PdV
8As Hs = Es + PV at the surface with the volume approximately zero it is reasonable to

set Hs = Es.
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manner with increasing T until a critical temperature Tc where it vanishes,
Adamson and Gast [1], and Probstein [2]. An algebraic relation originating from
van der Waals in 1894 was further developed and states that

σ = σ0

(
1− T

Tc

)n

(3.21)

where n is about 11
9 for organic materials and near one for metals, σ0 is a

material parameter.

3.6 Dimensionless Numbers
Special dimensionless numbers related to the e�ects of surface tension (capil-
larity) are here introduced. These numbers relate surface tension, viscosity, and
gravitation to speci�c characteristic dimension. They are listed below:

• A measure of the surface tension force to the gravitational force is given
by the Bond number

Bo =
gravitational force
surface tension force =

ρgL2

σ
(3.22)

where L is the characteristic length scale. The characteristic length may,
for example, be a meniscus9 height (see the later capillary rise example
in Chap. 5). When the Bond number is large the surface pressure e�ects
(due to surface curvature given by the Young-Laplace equation) may be
neglected in the liquid at rest.

• A length scale for surface tension governed phenomenon is derived from
the Bond number Eq. (3.22). Having

L ¿
(

σ

ρg

) 1
2

≡ ∆c ⇒ Bo ¿ 1 (3.23)

where ∆c is the so-called capillary length. For L = ∆c the Bond number
is 1. ∆c provides a measure (length scale) for when phenomena are either
controlled by gravity (> ∆c) or surface tension < ∆c.

• When a system has an imposed characteristic velocity, say, U , the so-called
capillary number is introduced. The number is the ratio of viscous forces
to surface tension forces and is de�ned as

Ca =
viscous forces

surface tension forces =
µU

σ
(3.24)

where µ = ρν is the dynamic viscosity. Having Newton's formula τ =
µ(∂u

∂y + ∂v
∂x ) in mind (Fredsøe [4]) gives some insight into the capillary

number: τ ≈ F/L2 ∼ µU/L and σ ≈ F/L hence Ca ≈ Fviscosity/Fσ.
9A meniscus is a concavo-convex lens-like shape as, e.g., the curved upper surface of a

column of liquid.
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• Taking the ratio between the capillary and the Bond number yields the
Stokes number. It is a measure of the viscous force to gravity force and is
de�ned as

NSt =
viscous forces

gravitational force =
µU

ρgL2
=

νU

gL2
. (3.25)

• Finally the well known Reynolds number Re relating momentum or inertial
forces (≈ ρU2/δ) to viscous forces (≈ µU/δ2) is given as

Re =
momentum forces
viscous forces =

Uδ

ν
(3.26)

where δ is a characteristic length on which U varies, normally determined
by geometry. Note that low Reynolds numbers in a �ow imply that inertial
forces are negligible and the �ow is creeping . High Reynolds numbers
predict that inertia dominates; the �ow is in an ideal �uid regime. The
Reynolds number and types of �ow are readily discussed in Chap. 2.

The dimensionless numbers de�ned above are going to be used in character-
izing contact angle phenomenon as well as the �ow in the following chapters. In
the later Chap. 7 some speci�c dimensions for micro�uidics are used to charac-
terize the regimes of the numbers.
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Chapter 4

Contact Angle

At the line of contact between three phases an angle between two of the phases
may be de�ned. The angle emerge from a minimum con�guration of interfacial
energies. In the following the angle between a liquid and a solid at a gas-liquid-
solid contact is named the contact angle θ. The contact angle of a liquid on a
solid surface is an important concept: it is an essential parameter in numerical
models and generally it gives rise to capillarity1.

This chapter will thoroughly describe many aspects of the contact angle phe-
nomenon. The �rst section in this chapter starts out with a classical macroscopic
thermodynamical description of the contact angle phenomenon. A microscopic
description is then presented. In the third section contact angle data is listed.
The fourth section deals with the dependence of the contact angle on di�erent
parameters. Notably the �rst sections deal with the static contact angle, that is,
of a system in equilibrium. The important topic of dynamic contact angle and
hysteresis of measurement are also treated in the fourth section. The �fth sec-
tion develops the notion of static and dynamic contact angle further. A moving
bubble is used as an example to illustrate the possible lubrication e�ects that
may arise. The last section details some aspects of the pressure drops given by
the Young-Laplace equation and relate them to surface energies.

4.1 Classical Description
When a liquid drop is placed on a solid surface it will normally not only be in
contact with the surface, but also with a gas. The liquid will not wet the solid
totally, but remain as a drop having a speci�c angle of contact with the solid,
the static contact angle (see Figs. 4.1 and 4.2). The important Young's equation
is derived in the following.

4.1.1 The Young Equation
Classically, as for the surface tension, the contact angle is dealt with in two
ways: �rstly, a force balance method that leaves some questions unanswered

1Capillarity is the phenomenon resulting from the fact that liquids have a �nite or zero
contact angle with solids. Examples of this are described in Chap. 5.
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and secondly, the more useful and correct energetic description. The two do
of course yield the same solution. Nevertheless the force description is quite
intuitive.

Force Balance
When in static equilibrium the line delimiting the wetted and the dry part of
the surface, the contact line, has to remain �xed.

q

s

ss
sgsl

gas

liquid

solid

-ssin(q)

contact line

+

Figure 4.1: Static force equilib-
rium of the contact line of, e.g., a
liquid drop placed on a solid.

In the horizontal direction this is ful�lled by a simple force balance illustrated
in Fig. 4.1. Hence having

σ cos θ = σsg − σsl, (4.1)
where σ cos θ is the force component of the liquid-gas surface tension σ(= σlg).
σsg is the solid-gas surface tension and σsl is the solid-liquid surface tension.
The surface tensions are here treated as �force per length� along the contact
line. Eq. (4.1) is known as the Young's equation and was �rst published in 1805.

Now, static equilibrium also requires a force balance in the vertical direction.
A normal force, σ sin θ must hence act downward on the solid at the contact
line. As described in Probstein [2] there is no unambiguous description of that
force component. This last fact leads to a more consistent description of the
contact angle, namely, an energetic.

Energy
A system in static equilibrium is in a con�guration of minimum energy. At
constant pressure and temperature the energy of relevance is the surface free
energy Gs, i.e., the surface tensions σ, see Eq. (3.16).

With an eye on Fig. 4.2 the change in total surface free energy, ∆Gs, resulting
from a displacement, dx, of the liquid is

∆Gs = ∆A(σsl − σsg) + σL∆l. (4.2)

Where L is the arc length along the contact line, hence ∆A = Ldx. With
L∆l = L(ld − l), that is, a �rst order Taylor approximation to the change in
area on the gas-liquid interface. ∆l is found by applying the sine relations to
the triangle with the sides l ld dx, i.e.,

sin(dθ)
dx

=
sin(θ − dθ)

l
=

sin(π − θ)
ld

22 Bubbles in Microchannels



Chap. 4 Contact Angle Sec. 4.1 Classical Description

q q- qd

dx

dq

liquid

solid

gas

l

ld

Dl

(a) Side view slice.

dx

gas
liquid

L

(b) Seen from above.

Figure 4.2: Set to �nd the surface energy minimum by �nding the change in free
surface energy accompanying a small displacement dx of the contact line. The liquid-
gas interface length is increased by ∆l.

using this and the trigonometrical addition formula yields

∆l = ld − l = dx

(
sin(π − θ)
sin(dθ)

− sin(θ − dθ)
sin(dθ)

)

' dx

(
sin(θ)

dθ
− sin(θ)− cos(θ)dθ

dθ

)

= dx cos(θ). (4.3)

In deriving Eq. (4.3) sin(dθ) ' dθ as dx tends to zero2. This is motivated by
the fact that at equilibrium

dGs(A)
dA = lim

∆A→0

∆Gs

∆A = 0. (4.4)

The above equation expresses that the surface free energy is at a minimum when
in equilibrium. Inserting Eq. (4.2) and Eq. (4.3) into Eq. (4.4) yields

σ cos θ = σsg − σsl, (4.5)

that is, the Young equation. The expression in Eq. (4.4) states that at equilib-
rium the surface free energy is at a minimum, any change in ∆A will increase
Gs.

In the Young's equation Eqs. (4.1) and (4.5) it should be pointed out that
the interfaces liquid-solid, liquid-gas, and solid-gas are in equilibrium. According
to Adamson and Gast [1] the surface tension σsg should in fact be given as

σsg − π0 (4.6)

where π0 is the change in surface tension (interfacial free energy) due to ad-
sorbtion. That is, the attachment of particles to the solid surface. As mentioned

2In general a Taylor expansion should have been made both in θ and x. It is readily shown
(Adamson and Gast [1]) that all other terms go to zero at least as dx2 for dx → 0.
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G ≡ G(P, T,N) and so a function of the number of particles N . The change π0

can be found from the Gibbs equation (Adamson and Gast Ch. III-5 [1], and
Atkins [6]). It relates changes in the surface tension with the changes of the
substances present at the surface. The surface tension of a solid changes with
adsorbtion of gas molecules, i.e., depending on the gas pressure P in general
related to the saturated vapor pressure P 0. For constant temperature

π0 =
RT

Σ

∫ P 0

0

nd(lnφP ) (4.7)

where φ is the fugasity coe�cient, that is, the deviation from the ideal gas law
(for an ideal gas φ = 1). The surface excess per square centimeter is Γs = n

Σ ,
with n the moles adsorbed per gram and Σ the speci�c surface area.

4.1.2 Adhesion
It is further interesting to de�ne the work of adhesion, Wsl, in a solid-liquid
interface. In this context ideal adhesion is simply de�ned as the adhesion on
uniform materials over a well de�ned unit surface area. The work of adhesion is
simply the change in surface free energies given as

Wsl = σlg + σsg − σsl. (4.8)

Hence the work required to separate one unit area solid-liquid into one unit
area solid-gas and one liquid-gas. Combining Eq. (4.8) and the Young's equation
yields an alternative de�nition of the contact angle

Wsl = σ(1 + cos θ) with σ ≡ σlg. (4.9)

4.1.3 Wetting and Spreading
Young's equation may be written in yet another form

k =
σsg − σsl

σ
= cos θ (4.10)

where k is the wetting coe�cient. It is important to note that there is no re-
striction on the magnitude of σsg and σ, nor on the sign and magnitude of σsl.
Their magnitude depend on the appropriate inter molecular forces (see next
subsection). It is only required that −1 ≤ k ≤ 1, several cases are distinguished
see Fig. 4.3 and the following:

k = 1: The contact angle θ is zero and the the liquid spreads completely over
the solid. The solid is termed �completely wetted�. The idea is that here
σsg = σ + σsl and the system �nds it equally pro�table to have a solid-
gas interface as having a solid-liquid and liquid-gas interface. Gravity and
intermolecular forces lower the overall potential energy by �totally� spread-
ing out the liquid.

0 < k < 1: θ lies between 0 and π
2 and the solid is said to be �wetted�. This term

might be a little confusing as the solid is actually only partially wetted.
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−1 < k < 0: θ lies between π and π
2 and the solid denoted �un-wetted� by the

liquid. This statement is again a little confusing as the solid is partially
wetted. σsl is not large enough to inhibit wetting. E.g., a drop of mercury
on glass has θ ' 180o, this is a consequence of the strong inter molecular
forces within the liquid.

k = −1: The contact angle θ is π and the solid is completely un-wetted. This
limit is un-physical, but can be modeled by assuming the liquid supported
by a thin �lm of gas.

k=1 0< <1k

-1< <0k k=-1q

q

Figure 4.3: A schematic representation of the four di�erent wetting con�gurations.

It is further possible to introduce yet another quantity S termed the spread-
ing coe�cient, given as

S = σsg − σsl − σ. (4.11)
Introducing this in the Young's equation yield

k = 1 +
S
σ

= cos θ. (4.12)

For S > 0 it is evident that no equilibrium can exist in the contact line as
S > 0 ⇒ k > 1. S > 0 implies that σsg > σsl + σ meaning that a solid-gas
interface would immediately be replaced by solid-liquid and liquid-gas inter-
faces (having lover energy). According to Probstein [2] S > 0 is only possible
on a molecular scale where as S = 0 is the condition for complete wetting on a
macroscopic scale (see above).

Examples of the capillary phenomena emerging from �nite contact angles,
i.e., the presence of a surface free energies or surface tensions are presented in
Chap. 5. But �rst some microscopic theory is investigated.

4.2 Molecular Description
In the previous section a classical thermodynamical description of the contact
angle phenomena was presented. The purpose is now to present and comment
a molecular (or quantum mechanical) approach described in the work by Kwok
and Neumann [9, 10], from 1999 and 2000. The work is based on new surface
tension and contact angle measurements.

The idea is to utilize the theory from intermolecular interaction in terms
of attractive potentials and so-called combining rules. The frame of the theory
is then used as guesses for several formula combining: contact angle θ, surface
tensions σ, and work of adhesion.
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The van der Waals forces is a general term for intermolecular forces in liquids,
they include interactions between permanent and/or induced molecular dipole
moments. If the stronger hydrogen bonds are present in the liquid (e.g., in water)
they dominate the van der Waals (Atkins [6]). The van der Waals interactions
are also important in the fewer solids where the much stronger ionic, covalent,
and metallic bonds are absent (Elliot Ch. 2.2.2 [11]). The general form of a van
der Waals attractive potential is

φij = −C6

r6
(4.13)

where r is the distance between two molecules, C6 is a coe�cient that depends
on the identity of the molecules, and i, j denotes speci�c molecules. Generally C6

includes all van der Waals contributions. A limitation of Eq. (4.13) is that it only
relates interactions of pairs of molecules. Interactions of, say, three molecules
are given by the Axilrod-Teller formula. Eq. (4.13) is only the attractive part of
the total potential of interaction. When two molecules come too close nuclear
and electronic repulsion take over, the repulsion is included, e.g., in the well
known Lennard-Jones (12,6)-potential model

V (r) = 4ε

[(r0

r

)12

−
(r0

r

)6
]

(4.14)

where r0 is the collision diameter and ε is the energy-well depth.

The work of Kwok and Neumann takes expressions like Eqs. (4.13) and (4.14)
together with di�erent combining rules3 and apply them to surface properties,
all though some points are left unanswered in their work as only interactions
between induced dipole moments are taken into account4. Notice that solids may
be polar or combine in hydrogen bonds with the liquid. Only few solids are van
der Waals solids. Hence one should be aware of these restrictions, as they also
point out in the articles the validity of the combining rules lack experimental
support.

By the joint application of a modi�ed molecular model, classical theory (pre-
sented in the previous section), and data �tting they provide the semi imperical
formula,

cos θ = −1 + 2
√

σsg

σlg

(
4(σsg/σlg)1/3

(1 + (σsg/σlg)1/3)2

)(ασsg)2/3

(4.15)

where α = 1.17m2(mJ)−1 is a numerical �tting constant. In the articles α is
found to be nearly independent of the chosen materials

All measurements are made on a few synthetic surfaces as, e.g., PMMA.
The results are compared with measurements of the contact angle and show
an accuracy of Eq. (4.15) in the order ±2o. The work on microscopic models
presented here seems encouraging, but clearly needs some generalization.

3A combining rule is used to express the energy well depth ε of two unlike molecules in
terms of the energy well depth of two like molecules. This rule may, e.g., contain ionization
and polaizability parameters. The simplest rule is the Berthelot rule: εij =

√
εiiεjj .

4This interaction energy is given by the London formula (Atkins [6]) and is normally derived
quantum mechanically by a perturbation method, Bransden and Joachain Ch. 15 [13].
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The models presented in this and the previous section are all for ideal solids
and liquids. The contact angle given is based on the Young equation. In practical
measurements there are many physical parameters that in�uence on the contact
angle. They are discussed in Sec. 4.4.

4.3 Experimental Data
Data for the static contact angle (the Young angle) is given in Table. 4.1.

Contact Angle Data, 20− 25oC.
Liquid Solid θ dθ

dT π0 Ref.
Water PMMA 73.7 - - [10]
Glycerol PMMA 66.8 - - [10]
Formamide PMMA 57.7 - - [10]
Water Platinum 40 - - [1]
Water Gold 0 - - [1]

Table 4.1: Data for the static measured contact angle (the Young angle).

4.4 Dependence of the Contact Angle
In the previous sections the contact angle has been treated as a stable and
static quantity (the Young contact angle). This is in general not true as contact
angles may be meta stable and di�er from the quantity predicted from the
Young equation θ. This is the phenomenon of contact angle hysteresis: the usual
observation is that the measured contact angle for a liquid advancing on a surface
θA is di�erent form the one receding θR from a surface. The di�erence θA − θR

is the contact angle hysteresis and can be as large as 50o for water on mineral
surfaces, Adamson and Gast [1]. An example of an experimental setup capable
of measuring both advancing and receding contact angles is seen in Fig. 4.4.

q

Solid surface

Liquid

A

Figure 4.4: An experimental
setup enabling the measurement of
both advancing and receding con-
tact angles of a liquid on a solid.
The movement direction of the
contact line at A depends on the
movement direction of the stick.
The stick is rotating about a �xed
axle. Dussan V. et al. [16].
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The static contact angle further di�ers for non-static measurements when
the contact line is moving. The measured parameter is the dynamic contact
angle θd. It is dependent on velocity and deformations due to viscous forces
that is on the capillary number Ca.

The main causes to hysteresis (heterogeneous surfaces, surface roughness,
and liquid-surface interactions) are presented below together with the dynamic
contact angle.

4.4.1 Heterogeneous Surfaces
Surfaces having areas of impurity or being made up of, say, two materials (with
distinct separated areas over small length scales) are said to have heterogeneities.
These can be modelled by the Cassie equation

σ cos θ = f1(σs1g − σs1l) + f2(σs2g − σs2l) ⇔ (4.16)
cos θ = f1 cos θ1 + f1 cos θ2 (4.17)

where f1 and f2 are the fractions occupied by surface with contact angle θ1 and
θ2, respectively. Adamson and Gast [1] also propose to average (or weight) the
two di�erent areas by

(1 + cos θ)2 = f1(1 + cos θ1)2 + f2(1 + cos θ2)2. (4.18)

The validity of the two model depend on the given situation.
An interesting application of the Cassie equation (Eq. 4.17) is for drops on

a woven material, i.e., a material with open areas (like a �lter). In this case
cos θ2 = −1 as θ2 = 180o, that is, un-wetted material, yielding

cos θ = f1 cos θ1 − f2. (4.19)

The presence of these multiple contact angles on the material causes meta-
stable equilibrium states of the system. The contact line has a tendency to pin
to the patches of di�erent material (it has to overcome an energy barrier). In
turn showing up as a hysteresis phenomenon.

4.4.2 Surface Roughness
On rough surfaces the contact angle is again di�erent from the one predicted
by the Young equation (Eq. (4.5)). The e�ects of roughness is modelled by the
Wenzel equation

cos θrough = r cos θ (4.20)
r is the ratio between the actual area and the projected area, and θ is the ideal
angle predicted by the Young equation. Hence an apparent (or projected) area
Aapparent is related to the actual area A = rAapparent, i.e., r > 1. Eq. (4.20)
implies that contact angles less that 90o are decreased and angles greater than
90o are increased by roughness.

Note that Eq. (4.20) is an imperical formula, generally contact angle mea-
surements on rough surfaces are non-reproducible (Adamson and Gast Ch. X.B
[1]). Furthermore roughness is greatly dependent on topology: parallel groves
and pits may have the same roughness, r, but yield completely di�erent angles.
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4.4.3 Liquid-Surface Interactions
Another set of causes for hysteresis arise when the liquid interacts with the
solid. The liquid may traverse the solid and alter its molecular structure through
chemical interactions. Hence the contact angle may be di�erent for the receding
liquid as the surface is altered by the advancing liquid.

The reproducibility of measurements is here time dependent as chemical
reaction times may play a role in the e�ective alteration of the solid-surface.

4.4.4 Dynamic Contact Angle
Whenever a contact line (triple point: solid-liquid-gas intersection) is in move-
ment the contact angle can no longer be seen as a static quantity. The angle
becomes dependent on the speed at which the line moves over the solid: the
angle is dynamic5.

When the contact line is moving the force balance incorporated in the Young
equation Eq. (4.1) is no longer satis�ed because, among other things, viscous
stresses in the liquid (Probstein [2]). This property hints the importance of the
capillary number Ca (recall Sec. 3.6) in the description of the dynamic contact
angle θd.

A description and understanding of the dynamic contact angle requires de-
tailed hydrodynamics and to some extent theory for molecular interactions. The
problem is not anymore based solely on thermodynamics and energy consider-
ations as for the Young equation. A key element in the description is a proper
description and de�nition of the boundary condition at the contact line. Where
the length scale requires the use of a so-called slip condition.

A classical model with a no-slip condition yields a singularity at the moving
contact line. For the classical model to hold, an in�nite force would be required
to sink an object into a liquid (Ramé and Garo� [18]), because it predicts an
in�nite drag force. Several steps and approaches have been made to solve this
problem:

1: The �rst procedure (already introduced in 1976 by Dussan V. [17]) used
to remove the singularity is having a slip condition at the solid-liquid interface
(mathematically a Green condition):

b
∂v

∂z
= v0 at z = 0. (4.21)

Where v0 is the extrapolated velocity and b is the so-called slip length (Sec. 1.10
in Smith and Højgaard Jensen [14]), see Fig. 4.5. The physical interpretation of

v

z

Solid

Liquid

b

0

Figure 4.5: The de�ni-
tion of the slip length b.

the condition is the sliding motion of the molecular layer closest to the solid.
Another way of interpreting Eq. (4.21) is through the linear relation between the
velocity along the surface and the shear stress (Newton's formula: τ = µdv

dz ). The
proportionality constant b, the slip length, is a phenomenological parameter and
describes the intermolecular interaction between solid and liquid. The parameter

5In any slow motion of bubbles having contact with a solid (a liquid-gas interface motion)
in, say, a microchannel the contact angle is dynamic. As this quantity plays a key role in any
model (numerical or analytical) and thus in the shape of the interface its understanding is
essential. It is here assumed that the bubble wets the walls (see the next section), so that
there is a triple point.
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has to be small for the sliding e�ect only to be signi�cant near the moving
contact line, where the stresses are important. This method yields results on
the form

Ca ≡ µU

σ
= kθ3

d, (4.22)

where k is a constant dependent on the approximations made. Generally the
model yields good results for small contact angles and small capillary numbers
Ca ¿ 1, de Gennes et al. [15].

a

z

x

a/q

Dc

a/q
2

Molecular

Proximal

Central

Distal

q( )x

z( )x

liquid

gas

solid

Figure 4.6: The four regions in the interface pro�le: 1. Molecular 2. Proximal (long
range van der Waals forces are predominant) 3. Central (controlled by viscosity and
surface tension) 4. Distal (controlled by viscosity and gravity). De Gennes et al. [15]

2: Secondly, more recent methods build upon dividing the area near the con-
tact line into di�erent regions. In each region di�erent physical properties are
prevailing characterized by the Bond number (see Sec. 3.6) and the limit of
the continuum representation of a liquid characterized by the Knudsen number
Kn (see Sec. 2.1). The relevant physical equation are solved in each region and
equated at the boundaries by asymptotic methods. The slip boundary condition
is therefore still used.

A very elaborate method divides the area into four regions shown in Fig. 4.6.
The method is very detailed and uses a long-range van der Waals forces model
in the region nearest the contact line (this prevents the appearance of a singu-
larity). Though in theory quantum mechanics should be used on the molecular
scale at the contact line itself. The method was presented in 1989 by de Gennes
et al. [15] (abbreviated dGHL). Notice that in the distant region gravity is also
accounted for. The model is here again restricted to low capillary numbers,
Ca < 10−3. Ramé and Garo� [18] have further elaborated a model for the
central region accurate for capillary numbers up to 0.1.

The dGHL method expands the pro�le to �rst order in Ca around the static
solution. In the central region where x À a/θ2, with θ the static contact angle
at equilibrium and a the molecular size, the local pro�le slope is readily given
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as
dζ

dx
= θ(x) = θe

[
1 + ε ln

(
2xθ2

a

)]
, ε =

3Ca

θ3
. (4.23)

Where ε is the perturbation parameter. Note that in Eq. (4.23) there is a natural
length scale a/θ2. It provides a measure for the length scales involving the long
range van der Waals forces.

A commonly used expression for the dynamic contact angle is an expression
obtained by O. V. Voinov in 1976. It relates the dynamic and the static contact
angle through the capillary number,

θ3
d = θ3 + 9Ca ln

(
H

Ls

)
(4.24)

where Ls is the slip length and H is a macroscopic dimension characteristic for
the �ow. Eq. (4.24) can be derived from Eq. (4.23) as we recognize Ls = a (de
Gennes et al. [15]) and set x ≈ ∆c. Taking the cube of Eq. (4.23) yields, to �rst
order in Ca,

θ3(∆c) ' θ3
d = θ3 + 9Ca ln

(
2∆cθ

2

a

)
+O(Ca2). (4.25)

The equation has exactly the same form as Eq. (4.24). The dynamic contact an-
gle is hence the outcome of a game between wettability (the static contact angle)
and a hydrodynamic contribution. Eq. (4.24) predicts a continuous change of θd

with increasing velocity, starting from θ. Though experimentally the relation is
only valid for Ca > Camin, where Camin can be found experimentally.

It is here important to notice that measurements yield a macroscopic so-
called �visible� contact angle. This angle is di�erent from the actual �true� or
microscopic value. This is exactly why x ≈ ∆c is chosen in Eq. (4.25). As ∆c is
a macroscopic length characterizing the transition from surface tension to grav-
ity dominated regions, thus Eq. (4.25) yields the macroscopic contact angle. It
should be pointed out that the concept of a true contact angle itself is dangerous
as it predicts a sharp interface at the contact line. For increasing capillary num-
bers (and hence speeds) the sharp interface vanishes and lubrication phenomena
appear. These considerations are further developed in the next section.

3: Finally some extra work has been put into de�ning a proper slip like condi-
tion. The condition stated in Eq. (4.21) still leaves a logarithm term not de�ned
on the contact line (see Eq. (4.23)). The �rst condition was a hydrodynamic slip
condition involving the shear stress. Another version of the slip condition (Pis-
men and Rubinstein [20]) de�nes the slip velocity through the thermodynamic
potential Ω ≡ Ω(T, V, µc) = F − µcN :

v = − D

nkBT
∇Ω, at z = 0. (4.26)

Where D is the surface di�usivity, n = N/V the particle number density, kB is
Boltzmann's constant, and T is temperature. The condition Eq. (4.26) follows
from physical kinetics; di�usion in the �rst molecular layers above the solid.
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Using this kinetic slip condition and the same division into zones as described
above, yields

ζ(a) =
(

a4Ca

3λ2
br

2
0

)2

, λb =
√

µD

nkBT
. (4.27)

where λb is the e�ective slip length, r0 is the van der Waals length (collision
diameter), a is the typical molecular diameter, and µ is the dynamical viscosity.
The dynamic (microscopic) contact angle is thus

θd = arctan
[
ζ(a)
a

]
. (4.28)

4.5 Lubrication vs. Contact Angle
The notions of static and dynamic contact angles have been discussed thoroughly
in the previous sections. It is thus obvious that a static bubble with su�cient
volume will wet the walls of a capillary tube. Obviously given the liquid-gas
interface has a �nite contact angle with the speci�c solid. What happens at
increasing �ow rates should be considered in details.

qq

(a) Static contact angles.

qq AR

(b) Dynamic contact angles..

qR
Liquid

h0

(c) Wetting liquid �lm forming.

q

h0

app

(d) Wetting liquid �lm.

Figure 4.7: Schematic progress in the wetting behavior of bubbles at increasing cap-
illary numbers.

Say that in the static position the interface has a given static contact angle θ
with the walls, Fig. 4.7(a). Whenever a su�cient external pressure is applied on
the tube the bubble will start to move and the contact angles will change as a
function of the capillary number (dynamic contact angle). There will be an ad-
vancing angle θA and a receding angle θR Fig. 4.7(b). The meniscus will deform.
At still increasing capillary numbers the viscous forces become more important.
A �lm of liquid starts to form at the front of the bubble (a lubrication process,
Probstein [2]), Fig. 4.7(c). A �nal increase of the capillary number will create
a wetting liquid �lm around the bubble, Fig. 4.7(d). In this last con�guration
there will still be an apparent contact angle θapp as the �lm generally is very
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thin. At capillary numbers greater than some critical value, typically ≈ 1, bub-
bles can undergo deformations and break into smaller bubbles.

The four steps described above are very schematic. Some of the aspects and
problems involved are in the following discussed in relation to several articles
[24, 25, 26, 27, 28, 29, 31, 32] and Gravesen [33].

The general trend in literature, when dealing with the motion of bubbles, is
to adopt either the contact angle or the thin �lm lubrication model: Ransoho�
et al. [24] use the contact angle model to determine conditions for snap-o� of
gas bubbles. Stark and Manga [26] only consider the motion of non-wetting
bubbles in their simulation of bubbles in networks of tubes (an approximation
to porous materials). Moreover when the wetting model is applied one should
also take friction at the contact line into account. This is discussed in more
detail in Sec. 5.2.

The classical reference in the non-wetting bubble (lubrication or thin �lm)
model is from 1961 by Bertherton [28]. Further work is made by Parker and
Homsy [29] in 1983, and Ratulowski and Chang [25] in 1989. The three arti-
cles focus on the hydrodynamic aspects of the travelling bubble problem. The
later article also focus on surfactants leading to Marangoni e�ects. Summarized
the pressure drop over the bubble is shown to be proportional to σ

r (3Ca)2/3

and the wetting �lm thickness h0 proportional to r(3Ca)2/3 where r is the
tube radius. The relations are useful up to Ca ' 10−1. When letting Ca tend
to zero one should be aware when the theory predicts length scales at which
non-hydrodynamic contributions take e�ect, ` ≈ 100 nm. At these dimensions
long range molecular forces exist between macroscopic objects (van der Waals
dispersion forces, see Adamson and Gast [1] Ch. 6 or Atkins [6]).

The models for dynamic contact angle are generally restricted to Ca < 10−3.
Though Ramé and Garo� [18] found agreement with experimental results, for
the so-called central region, for Ca < 10−1. This could well be true as the
bubble interface keeps an apparent contact angle, Fig. 4.7(d), when the wetting
�lm forms. The two theories might very well predict the same physical behaviors
in the transition Ca regimes. At present no literature has been found comparing
the two theories.

Methods exist to handle the physical properties of the wetting �lm while
keeping the apparent contact angle description. A so-called disjoined pressure
Π(h) is introduced in the Young-Laplace equation, where h is the distance from
the interface to the wall. The equation is called the augmented Young-Laplace
equation. A thorough description is given by Wong et al. [36].

The problems involved in the transition from the wetted bubbles to the non-
wetted bubble is not here treated in detail. However, here is a list of things to
consider:

• The transition back and forth could show hysteresis and hence have a
nonlinear behavior.

• What are the dynamics involved when the bubble dries the surface (the
gas bubble wetting the wall).

• As mentioned, what happens when the �lm becomes of the same length
scales as, e.g., the surface roughness.
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• Can pools of liquid appear/form on the solid surface within a dried region.

The theory of wetting �lms is investigated thoroughly in courses given by
an assembly of scientist in Les Houches, France in 1988 [31, 32]. Both thermo-
dynamical, mean �eld, and microscopic theories are presented and discussed in
relation to experimental results. Lubrication and wetting is also discussed by
Adamson and Gast [1] Ch. 12-13. Finally, work on the stability of wetting �lms
investigating nucleation and capillary waves is made by Schulze et al. [27].

4.6 Notes on Pressures and Energy
This section �rstly introduces some short notions about driving pressures when
a bubble is present in a capillary tube. The emphasis is especially put on the
sign and actual pressure drops involved. Only pressure drops due to interface
curvature, given by the Young-Laplace equation, are considered. Friction is in
the following neglected. Secondly to supplement the �rst pressure part an energy
consideration is made.

Pressures
First of all the sign convention used in the Young-Laplace equation, Eq. (3.9),
is illustrated in Fig. 4.8. The pressure over a curved interface ∆Pi is always
given as the internal (concave side) pressure minus the external (convex side)
pressure (all curvatures are positive). This convention actually results form the
de�nition of positive work in the derivation of the equation. It is also evident
that the pressure is highest in a bubble (on the concave side).

P P
in ou

Figure 4.8: In the Young-Laplace equation Eq. (3.9)
the pressure di�erence ∆Pi is a positive quantity
and is always de�ned as: ∆Pi = Pin − Pou where
Pin > Pou. The position of Pin and Pou is always
de�ned in the same manner.

To ease the understanding of the next sections and chapters a few conven-
tions are presented in relation to Fig. 4.9.

GasPP PPin outL R

l

l ll b RL

dV
dV

1
2

Figure 4.9: A gas bubble with length `b in a tube of length `. Inlet pressure Pin, outlet
pressure Pout and pressures to the right and left of the bubble PL and PR, respectively.

34 Bubbles in Microchannels



Chap. 4 Contact Angle Sec. 4.6 Notes on Pressures and Energy

The pressure over the bubble is de�ned as: ∆Pb = PR − PL. The externally
imposed pressure is: ∆Pe = Pout − Pin. Having the pressures de�ned in such
a way one can �nd the driving pressure gradient Γ of the system. In view of
Fig. 4.9 and assuming that the two �uid elements dV1 and dV2 are moving at
the same speed. They experience the same gradient

dV1 : Γ1 =
PL − Pin

`L
(4.29)

dV2 : Γ2 =
Pout − PR

`R
(4.30)

the fact that Γ1 is equal to Γ2 yields

Γ =
∆Pe −∆Pb

`− `b
, (4.31)

where ` and `b are the tube and bubble length, respectively. The part ∆Pb is the
pressure that sustains the bubble and is thus not available to drive a �ow. Hence
if ∆Pb is positive the e�ective pressure gradient driving the �ow is smaller than
expected. When bubbles clog a capillary channel one need at least a ∆Pe higher
than ∆Pb to initiate �ow. The expression for Γ in Eq. (4.31) can, e.g., be used
in a Pioseuille �ow model where bubbles are present in a cylindrical tube.

Moreover with no externally applied pressure and wall friction neglected
a bubble will move by it self if ∆Pb 6= 0. The sign of the pressure gradient
Γ = −∆Pb/(`−`b) will determine the direction. For Γ < 0 the �ow is towards the
right and vice versa. This last notion naturally leads to an energy consideration.

Minimizing Energy
Consider the 2D gas bubble in Fig. 4.10 in a given geometrical constrain. There
are no externally applied driving pressures.

gas

solid
liquid

L

Lgs

gl

Figure 4.10: An example of a 2D gas
bubble in a given geometry. The set-
up is used to illustrate an energy argu-
ment comparable to the driving pres-
sure concept.

The direction of movement predicted by Γ will comply with an energy mini-
mizing path. In the present case the energy of interest is the total surface energy
Es

tot of the bubble. In the present 2D example it is given as

Es
tot = σΛgl + σgsΛgs, (4.32)

where σ is the gas-liquid interfacial tension, σgs is the gas-solid interfacial ten-
sion, Λgl is the length of gas-liquid interface, and Λgs is the length of gas-solid
contact. The system will drive Es

tot continuously to the local minimum. For real
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3D bubbles the energy is obviously given as area times interfacial surface tension.

Even though the energy description is more physically intuitive the pressure
description will be in focus in the following chapters. The so-called clogging
pressure of a system is introduced.
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Chapter 5

Capillarity and Examples

Capillary phenomena can be de�ned as physical behavior of liquids resulting
from a �nite or zero contact angle. More generally capillary motion are �ows
governed to some extent by surface tension. The precise nature of the �ows is
characterized by the bond number Bo, the capillary number Ca, and so forth.

In this chapter the subject of capillary rise is �rst introduced. It is a classi-
cal example of capillary motion and it illustrates some of the phenomena quite
well. Secondly, and more in the scope of this thesis, a simple method to illustrate
clogging of microchannels (capillary tubes) by bubbles is introduced1. The bub-
bles are here static or very slow moving (Ca ¿ 1) so represented by a contact
angle and a hemispherical interface. Finally bubble motion in capillary tubes,
at higher capillary numbers, is discussed. Marangoni e�ects are also taken into
account. The lubrication approximation is discussed.

5.1 Capillary Rise
Capillary rise is the classical example of capillary motion. If a capillary tube
of radius a is introduced vertically into a pool of liquid, the liquid will rise or
fall due to the pressure drop over a curved interface, see Fig. 5.1 and 5.2. In
the following the surface tension σ is assumed constant at the meniscus. The
equilibrium height H0 is in the following found using an approximation and
secondly the exact solution is described.

Simple Solution
When the tube is circular in cross section the meniscus may be approximated by
a hemispherical shape. It will have constant radii of curvature R = R1 = R2 =
a/ cos θ where θ is the contact angle and a is the tube radius. Deviations from
hemisphericity is associated with pressure drop over the meniscus height h due to
gravity, deforming the meniscus (surface tension alone will yield a hemispherical
surface). The measure of the gravitational forces to surface tension is given by

1This example is also the basis for some of the numerical simulations of the following
chapters.
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Figure 5.1: Capillary rise in a circular tube of radius a. The liquid has a contact angle
θ < 90o, and a curvature R = a

cos θ
. The equilibrium height of the water column is H0.

H0

q

2a

Liquid

Gas

Figure 5.2: Capillary �fall� of mercury (Hg) having a contact angle θ ≈ 140o > 90o.
The pressure drop over the meniscus here needs to be balanced by a negative pressure
in the liquid.

the Bond number (Bo = ρgh2/σ). The condition for hemisphericity is hence

Bo ¿ 1 ⇒ h ¿
(

σ

ρg

)1/2

≡ ∆c, (5.1)

where ∆c is the capillary length, previously mentioned.
The equilibrium height H0 is found by requiring the pressure drop due to
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the curvature of the meniscus to be equal the pressure drop due to a change in
water column height (at equilibrium). Hence

∆P = P0 − Pi ⇔
2σ

1
R

= P0 − (P0 − ρgH0) ⇔

2σ
cos θ

a
= ρgH0 ⇔

H0 = 2
σ

ρg

cos θ

a
= 2

∆2
c

a
cos θ. (5.2)

Note that the equation is very general and accounts for the capillary �fall�
whenever θ > 90o. This is the case for mercury where θ ≈ 140o and is illustrated
on Fig. 5.2. When θ > 90o then cos θ < 0 resulting in the necessary sign change,
i.e., ∆P = Pi−P0. For small capillary tubes (small a) H0 can become relatively
large: 4 cm for water in a tube with radius 0.1 mm.

It is also possible from this simple theory to predict the velocity at which
the water column rises as well as the time it takes. Assuming a Poiseuille �ow in
the tube (Appendix B) and the meniscus to rise with the mean velocity yields

U =
dH

dt
=

a2∆P

8µH
, (5.3)

where H is the instantaneous position of the meniscus. The pressure di�erence
∆P is the unbalanced pressure di�erence at the interface, i.e.,

∆P =
2σ cos θ

a
− ρgH. (5.4)

The two equations Eq. (5.3) and Eq. (5.4) are easily integrated. The actual
time to rise is

t = τ

(
ln

(
1

1−H0/H

)
− H

H0

)
, τ =

8µH0

ρga2
(5.5)

where τ is the characteristic time.
The relation shows that H → H0 only if t → ∞ which is a consequence of

the approximations made. Eq. (5.5) can be expanded for H/H0 → 1 yielding
H

H0
= 1− exp

(
− t

τ

)
. (5.6)

It should here be mentioned that capillary rise is the basis for one of the
most accurate and most used methods to measure surface tensions, Probstein
[2]. Further it is instructive to see how the pressure drop over a curved interface
has to be balanced by an �applied� pressure drop.

Exact Solution
The capillary rise problem can also be solved exactly (to some extent). The tube
is cylindrical so that the meniscus can be represented by a surface of revolution
with two main curvatures given in Appendix A. The balance of pressure at
equilibrium yields

ρgy = σ(
1

R1
+

1
R2

) = σ

(
y′′

(1 + y′2)3/2
+

y′

x(1 + y′2)1/2

)
, (5.7)
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where y = y(x) is the elevation to the meniscus from the �at liquid surface
at every point y′ = dy/dx, y′′ = d2y/dx2, and x is the radial distance, see
Fig. 5.1. The total weight WT of the water column is found by introducing the
new coordinates b = y′ and hence y′′ = bdb/dy. Eq. (5.7) is thus rewritten

ρgy = σ

(
bdb/dy

(1 + b2)3/2
+

b

x(1 + b2)1/2

)
. (5.8)

The total weight is hence by use of Eq. (5.8) given as

WT =
∫ 2π

0

[∫ a

0

(ρgy)x dx

]
dϕ

= 2πσ

∫ [
xdb

(1 + b2)3/2
+

bdx

(1 + b2)1/2

]

= 2πσ

[
xb

(1 + b2)1/2

]x=a,b=tan φ

x=0,b=0

(5.9)

since dx/dy = 1/b generally and b = dy/dx = tan φ at x = a. Inserting the
limits yields

WT = 2πaσ cos θ. (5.10)
It is very interesting to note that Eq. (5.10) is exactly what is expected from

physical considerations: Assuming the meniscus to be �hanging� from the walls
of the tube and its weight to be supported by the vertical component of the
surface tension (force per length), σ cos θ, times the circumference, 2πa.

Where the solution Eq. (5.10) is exact it is not possible to solve Eq. (5.7)
explicitly. Only numerical solutions are available with the contact angle given as
one of the boundary condition y′ = tan φ = tan(π − θ) at x = a. The equation
has to be solved, e.g., by the shooting and trial method as it is a nonlinear
boundary value problem. This has been made in Appendix C. As expected the
simple solution, Eq. (5.2), turns out to be a very good approximation whenever
h ¿ ∆c.

5.2 Clogging of Contracting Microchannels
The clogging of microchannels is a common problem in micro�uidics and is
caused by either: precipitation of materials due to chemical reactions, solid par-
ticles getting stuck or by bubbles. The clogging by bubbles is a central topic of
the thesis it is discussed in this section and further studied by use of simulations
in Chap.9.

The clogging by bubble is related to the speci�c geometry of the microchan-
nel. A bubble might get stuck because of sharp angles or contractions of the
channel. To illustrate the clogging of contracting channels two simple cases are
discussed: a sudden contraction and a tapered channel, Figs. 5.4 and 5.5. Both
cases are rotational symmetric and are treated using the contact angle descrip-
tion. The situations discussed are hence static. The clogging pressure of a sys-
tem is the externally applied pressure necessary to balance the bubble when it

40 Bubbles in Microchannels



Chap. 5 Capillarity and Examples Sec. 5.2 Clogging of Contracting Microchannels

is clogged in a microchannel. Two main factors a�ect the clogging pressure: the
curvature of an interface and friction at the contact line. The two factors are
here discussed separately.

The tapered channel geometry has previously been investigated by MIC and
Danfoss. It is the simplest alternative to a sudden contraction channel geometry.
The geometry is thoroughly analyzed in Sec. 9.3 where it is found to exhibit
advantages regarding the clogging phenomenon.

Curvature (Young-Laplace)
The problem is handled in the contact angle picture, which is valid at zero
or very low capillary numbers. In this limit the front and rear interfaces of a
bubble are nearly static pro�les and are spherical, Ratulowski and Chang [25].
This is true as the spherical shapes provide a minimal pressure drop and thus a
minimum surface energy. The minimum is attained within the given geometrical
and contact angle restrictions, Ransoho� et al. [24].

q

q

d/2
R

Figure 5.3: Curvature (1/R) of a bubble in a channel of diameter d. The meniscus is
assumed spherical.

Before applying the Young-Laplace Eq. (3.9) to the case illustrated in Figs. 5.5
and 5.4 the radius of curvature is determined for the simple straight channel
geometry shown in Fig. 5.3. It is easily seen that

cos θ =
d

2R
⇔ R =

d

2 cos θ
. (5.11)

The curvature yields a pressure drop over the interface given by the Young-
Laplace equation as

∆Pi = σ

(
1

R1
+

1
R1

)
= 4σ

cos θ

d
, (5.12)

as symmetry of rotation implies that the two main curvatures are identical,
R1 = R2 = R. In a straight channel the total pressure drop, due to curvature,
over the bubble is obviously zero. ∆Pi is identical with di�erent sign at each
end of a bubble.

The total pressure over the bubble ∆Pb, in the sudden contraction geometry,
is found by applying Eq. (5.11) to the case depicted in Fig. 5.4. The pressure
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Figure 5.4: A bubble passing through
a sudden contraction. The curvatures
at both ends are di�erent and constant
while the bubble is in the contraction.
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Figure 5.5: A bubble in a tapered channel. Appropriate names have been given to
di�erent lengths and angles in use. The curvatures depend on the position of the bubble
because of the tapering.

drop over the bubble is

∆Pb = 2σ

(
1
R
− 1

r

)
= 4σ cos θ

(
1
D
− 1

d

)
. (5.13)

Similarly the total pressure di�erence over a bubble in a tapered channel is
found by applying Eq. (5.11) to the case depicted in Fig. 5.5. All in all the total
pressure di�erence over the bubble is

∆Pb = 2σ

(
1
R
− 1

r

)
= 4σ

(
cos(θ − θt)

D
− cos(θ + θt)

d

)
(5.14)

where θt is the tapering angle and θ is the contact angle. In this case D and d
are function of position, tapering angle, and bubble volume.

It is here important to keep track of the sign conventions. ∆Pb is as described
in Sec. 4.6 the right pressure minus the left pressure (∆Pb < 0 represents a pres-
sure drop, etc.). The pressures are taken just outside the bubble in the bulk of
the liquid.

When working with a 2D model the equations should be divided by a factor
2 as there is only one curvature for each interface. 2D models generally impose
R2 = ∞. In practice the two diameters d and D are found by requiring conserva-
tion of the total bubble volume (or area) of say an initial bubble. In Appendix D
a Matlab program analyzing the tapered channel example is presented.
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Friction
Experiments show that the liquid-solid-gas contact line in a capillary system
has a de�nite resistance against being moved along the solid surface. The static
friction of this line is accounted for through the empirical formula

α =
aP0

2
⇔ P0 =

2α

a
(5.15)

where α is an empirical frictional surface tension parameter, P0 the minimum
pressure required to initiate �ow, and a the capillary radius in a cylindrical tube.
Experimental data suggest that 10 < α < 100mJ m−2, Schwartz et al. [23]. For
water in a polymer tube α ≈ 10mJ m−2. Though these values may be lower as
α is dependent on many parameters.

Work by Tenan et al. [21] characterize the friction through an increase in
work of adhesion caused by the deformation of the meniscus. They establish
a one parameter model where α is de�ned through a �friction angle� ξ. ξ is
characteristic for the speci�c solid (chemical nature, roughness, etc.) and is
independent of the speci�c liquid. Using simple macroscopic theory (work of
adhesion, the Young-Laplace equation, and conservation of volume) they ob-
tain the following functional relation between α and the contact angle θ in a
cylindrical tube

α

σ
= sin

∣∣∣∣θ + ξ2 sin2 θ cos θ

1 + sin θ

∣∣∣∣ sin |ξ sin θ|, (5.16)

ξ normally never exceeds ≈ 0.3. From Eq. (5.16) it is evident that given the
friction angle, ξ, of a solid the liquid-solid friction can be predicted for any
liquid simply knowing the surface tension properties of the liquid, i.e., θ and σ.
Similar equations to Eq. (5.16) can be derived for any geometry.

Moreover Eq. (5.16) also predicts that low friction is to be predicted at high
(≈ 180o) and low (≈ 0o) contact angles since the surface tension remains �nite.
Finally Eq. (5.16) shows that α is symmetrical about a contact angle θ = 90o,
as seen in Fig. 5.6.
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Figure 5.6: Relative friction α
σ
versus

the contact angle, θ, for di�erent val-
ues of the friction angle, ξ, according
to Eq. (5.16).

The friction term Eq. (5.15) is quite important in capillary �ows as it is of
the same order of magnitude as pressures due to the curvature of the interface.
Though the �ction parameter α is found as a static friction parameter some
papers (e.g., Matsumoto and Colgate [22]) also include the term as a dynamic
friction. This makes sense, but no data is available to corroborate this.
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A tentative explanation of the friction parameter might be that it basically
represents all microscopic interactions with the contact line, i.e., interactions
that are not accounted for in the macroscopic Young-Laplace equation. An in-
terface between say a gas and a liquid typically has a thickness comparable to
a few molecule diameters (< 1 nm). The interface interacts with, e.g., rough-
ness or chemicals on the solid surface, at the triple point, and hence induces a
friction. The interactions force a deformation of the interface resulting in the
energy dispersion (extra work) responsible for the friction. These interactions
are also present while the line is moving and should be accounted for. Though
the friction parameter, α, might change from a static to a dynamic value as
other e�ects play a role in the dynamic case (e.g., thin liquid �lms).

The Clogging
The total external pressure (applied on the left hand of the channel) needed
to balance a bubble in the sudden contraction is thus found from Eqs. (5.13)
and (5.15), i.e., the pressure drop due to interface curvature and friction, with
appropriate signs:

P = 4σ cos θ

(
1
d
− 1

D

)
+ 4α

(
1
d

+
1
D

)
. (5.17)

Similarly, the total external pressure needed to balance a bubble in the ta-
pered capillary channel is thus found from Eq. (5.14) and Eq. (5.15) as

P = 4σ

(
cos(θ + θt)

d
− cos(θ − θt)

D

)
+ 4α

(
1
d

+
1
D

)
. (5.18)

In this last �tapered� case the contribution from the �rst term can be negative
because of the tapering angle, θt. Note that in both cases there is a friction
contribution from both end of the bubble. This theoretical approximation is
compared with data from numerical simulations in the later Chap. 9.

5.3 Non-Cylindrical Tubes
In the previous subsections the channels considered where rotational symmetric,
i.e., all cross sections in the r, z-plane are circles, Fig. 5.7. Within these geomet-

z

r
q

Figure 5.7: Cylindrical
system of co-ordinates.

rical restrictions the bubble interface is as mentioned spherical. The resulting
interfacial mean curvature H yields a minimum surface energy con�guration
(remember ∆Pi = σ2H, Eq. (3.9)).

Even when the cross sections are no longer circles an expression for the
pressure drop over the interface ∆Pi can be derived. In this situation wetting
liquid in corner regions appear for 0 < θ < θc where θc is a critical contact angle,
see Fig. 5.8. Whenever the contact angle θ is greater than the critical value θc

the interface is still part of a generalized sphere, i.e., an ellipsoid with main
curvatures R1 and R2, Ransho� et al. [24]. R1 and R2 are de�ned by geometry
and the given contact angle. For a square capillary θc can be found by requiring
the ellipsoid shaped interface (actually a sphere as R1 = R2) to circumscribe
the square cross section, i.e.,

a

cos θc
= a

√
2 ⇔ θc =

π

4
. (5.19)
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Figure 5.8: Cross section of a square capillary tube. Gas is introduced into a tube �lled
with liquid. The cross section is taken away from the interface front at the contact
line. The liquid has a �nite contact angle θ < θc. The wetting liquid and thin �lm
regions are shown.

The �rst term is the diameter of the sphere (as found in Eq. (5.11)) the second
the diagonal of the square. For a more details discussion see Appendix E.

The volume of liquid in the corner regions is much more important than the
volume in eventual thin wetting �lms, see Fig. 5.8. The dynamics of the liquid
in the corner regions should therefore be accounted for in dynamic models.

The method for �nding the curvature, and hence the pressure drop, builds on
the contact angle formulation (neglecting the thin �lms). The mean curvature of
the interfaces H is related to a dimensionless curvature Cm through the radius
R of the largest inscribed circle of the capillary tube by

Cm =
R∆Pi

σ
= 2RH, (5.20)

where ∆Pi is the pressure over the curved interface. In the case depicted in
Fig. 5.8, R = a/2. Values of Cm for di�erent geometries can be calculated
by solving the Young-Laplace equation numerically in the given 3D geometry
with given contact angle, Wong et al. [36]. The method is applicable for static
menisci and solves a boundary value problem (a given contact angle) by tuning
on the pressure drop (conceptually the same method as for the capillary rise
problem described in Appendix C). Thus Cm depends on the speci�c geometry
and contact angle. Values of Cm are given in Table 5.1.

The data presented in the table can be used to make static quantitative
calculations of clogging pressures as was done for the circular case in Sec. 5.2.

For the case of tubes having near constant cross sections a cunning formula-
tion by Mayer and Stowe [37] was made to determine Cm and hence ∆Pi. The
idea is to minimize the pressure drop over the interface which is the same as
minimizing the surface energy. The problem is condensed to a 2D situation that
can be handled analytically to great extent.
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Shape Aspect Ratio Contact Angle Cm Ref.
Circle - θ 2 cos θ -
Square - 0o 1.886 [36]
Square - 15o 1.846 [36]
Square - 30o 1.699 [36]
Square - 40o 1.527 [36]
Rectangle 2 0o 1.425 Appendix E
Rectangle 2 20o 1.364 Appendix E
Rectangle 2 40o 1.146 Appendix E

Table 5.1: Data for the non-dimensional curvature of menisci as function of cross
section shape and contact angle.

By considering the work associated with an in�nitesimal displacement of the
contact line, balancing the surface free energy, and assuming the meniscus in
front of the contact line to be unchanged, it is readily found that

∆Pi = σ

(
Lgl + Lgs cos θ

A

)

min
. (5.21)

Here Lgl and Lgs are portions of the total cross-sectional perimeter of the gas
bubble L = Lgl + Lgs (e.g., the perimeter of the gas in Fig. 5.8), A is the
cross-sectional area of the gas, and θ the static contact angle. ∆Pi can be found
by making Lgl, Lgs, and A functions of a parameter (e.g., an angle or a ra-
dius of curvature) deriving the right hand side of Eq. (5.21), and minimizing
with respect to that parameter. The results from Table 5.1 are found to agree.
Eq. (5.21) is derived and applied on an example in Appendix E.

The theory for these non-circular capillary tubes has mainly been derived
in relation to �ow in pores and is widely investigated by e.g., Mayer and Stowe
[37], Ransho� et al. [24], Man and Jing [34], and Reeves and Celia [35].

5.4 Lubrication/Thin-Film Theory
The results obtained for the motion of bubbles in circular capillary tubes at
low Reynolds numbers when applying the so-called lubrication theory are here
shortly presented. It is not in the scope of this thesis to derive all the equa-
tions, but some of the aspects involved are here shortly summarized. The �rst
theoretical treatment on a steadily moving bubble at velocity u in a circu-
lar capillary tube was done by Bertherton [28] in 1960. Later in 1983 Parker
and Homsy [29] formalized Bretherton's approach with use of perturbation and
asymptotic matching theory. The governing equations were still mean �eld equa-
tions (Navier-Stokes and the Young-Laplace equations). Later more work has
been done in describing the thin �lm region including among other things in-
termolecular forces. Marangoni e�ects resulting from surfactant on the bubble
interface is discussed by Probstein [2] or Schwartz et al. [38]. In 1989 Rutalowski
and Chang [25] extend the previous discussions to shorter bubbles by an intro-
duction of arc length coordinates measured on the bubble interface.
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To solve the steady state bubble problem for low Reynolds numbers (Re < 1)
one applies the creeping �ow equation of motion with appropriate boundary
conditions. These are no-slip condition on the walls and the pressure given by
the Young-Laplace equation on the bubble interface. Further, appropriate shear
stress conditions are given on the bubble liquid interface whenever gradients in
the surface tension are present (the Marangoni e�ect). The most important and
relevant results from literature are summarized in the following two paragraphs.

Non-Wetting Bubbles
For non-wetting bubble, in a cylindrical capillary tube of radius r, moving with
speed u the pressure drop over the bubble is given as (Ratulowski and Chang
[25])

∆Pb ' σ

r
[9.40 Ca2/3 − 12.6 Ca0.95], Ca < 0.1 (5.22)

where the capillary number is de�ned by the bubble speed: Ca = µu/σ. Eq. (5.22)
is valid for bubbles with volumes Vb larger than the critical volume Vc:

Vb > Vc =
4
3
πr3. (5.23)

Vc is the volume of the maximal spherical bubble possible. An important feature
of the theory is that the pressure drop ∆Pb in Eq. (5.22) is independent of the
bubble length. This results form the zero shear stress condition at the liquid-gas
interface. The �uid in the thin �lm region slips by the bubble with no drag
forces. All the pressure drop results in the di�erence in curvature of the front
and rear of the bubble.

The speed of the bubble u exceeds the average speed of the �uid v by an
amount uw. u is related to v through w as

v = (1− w)u, w ' 1.29 (3Ca)2/3, Ca < 0.1. (5.24)

It has been shown numerically that the last equation is valid for Vb > 0.95Vc,
Stark and Manga [26]. Eq. (5.24) shows that the net back �ow of liquid within
the wetting �lms increase the velocity of the bubble. This can be understood
easily by a volume conservation consideration.

At last the thickness, h0, of the wetting �lm is given by

h0 ' 0.643 r(3Ca)2/3. (5.25)

Note that non-hydrodynamic forces such as long range van der Waals, typically
become important for length scales less than about 10 − 100nm, Stark and
Manga [26].

Marangoni E�ects
When a surface-active material (a surfactant) is introduced in the bulk liquid the
�ow around the bubble, in the thin �lm, will cause a non-uniform distribution on
the interface. This will in turn create gradients in the surface tension and hence
a surface shear stress, τs = dσ/dz. A general analysis of the problem should
include a transport equation for the surface excess concentration Γs. Though a
simpli�ed model is described by Probstein [2].
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The surfactant dramatically increases the shear stress in the �lm (it is not
anymore zero on the interface). Employing a simple force balance in the �lm
yields

∆Pb = 0.942 Ca1/3 `bσ

r2
, (5.26)

where `b is the length of the bubble and r is the tube radius. Note that Eq. (5.26)
is a �rst order expansion in Ca and not valid for as large capillary numbers as
Eq. (5.22). Combining the Young-Laplace equation and Eq. (5.26) yields

1
σ

(σfront − σrear) = 0.471Ca1/3 `b

r
. (5.27)

Where σfront and σrear are the apparent front and rear surface tensions, respec-
tively.

The main conclusion to draw is that the introduction of surface active mate-
rials dramatically increases the pressure needed to drive a bubble. The pressures
can be from two to four orders of magnitude larger than those in the absence
of surfactant, Probstein [2].

5.5 Bubble Motion in a Capillary Tubes
Generally the description of a moving bubble in a capillary system is very com-
plicated as it involves the handling of the free surface at the gas-liquid interface.
Moreover it may be complicated by the presence of a moving contact line as
is investigated in Sec. 4.4.4 or by use of lubrication theory. The task normally
involves numerical methods to great extent.

Some simple geometries and cases can be treated partly analytically. As de-
scribed above, the lubrication description has been investigated in great detail.
One other method is to utilize the driving pressure gradient of a system pre-
sented in Eq. (4.31), in a given hydrodynamical model. Note that in the dynamic
contact angle and the wetting �lm description the pressure over the bubble de-
pends on the velocity (Ca number) which in turn in�uences the pressure drop.
The system is recursive in nature.

As an example and for simplicity the capillary tubes are here assumed of
circular cross section and the �ow having low Reynolds numbers, i.e., Poiseuille
�ow theory applies (see Appendix B).

In a straight channel of length ` the total �ow rate when bubbles are present
is approximated by

Q =
πr2

8µ(`− `b)

[
∆Pe −

∑

bubbles
∆Pb(Q)

]
. (5.28)

Where `b is the total length occupied by bubbles, ∆Pb(Q) is the pressure drop
over the bubble, and ∆Pe is the externally imposed driving pressure. ∆Pb(Q)
is depending on the �ow rate Q through the capillary number.
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Chapter 6

Bubbles in General

The principles behind the formation of bubbles are very important especially in
micro�uidics where bubbles generally are to be avoided. The topic is very broad
and is out of the scope of this thesis. Some of aspects are however presented
shortly in this chapter. The pressure e�ects are very illustrative and interesting.
Firstly the solubility of gases is discussed in relation to an empirical formula.

6.1 Solubility of Gas in Liquids
The solubility of a gas in a liquid is governed by empirical Henry's law. It de-
scribes how the solubility of gas is dependent on external pressure. The solubility
is also decreasing with increasing temperature. For a solution of gases in water
the equilibrium constant is denoted Kh. For a gas A in equilibrium with water
(a saturated solution), i.e., Ag ­ Aaq, Henry's law states:

Kh =
[Aaq]
p(Ag)

=
molar concentration of gas in liquid

partial pressure of the gas (6.1)

Typical values for a solution in water are given in Table 6.1.

gas Kh t/◦C

Cl2 0, 77 M/bar 25
H2 0, 790 M/bar 25
O2 2, 18 mM/bar 0
O2 1, 71 mM/bar 10
O2 1, 38 mM/bar 20

Table 6.1: Values of the equilibrium constant in Henry's law, with M the molar mass
(mass per mole of substance).

The form of the equilibrium constant, Eq. (6.1), shows that the concentration
of a solute gas in a solution is directly proportional to the partial pressure of
that gas above the solution. Henry's law is found to be an accurate description
of the behavior of gases dissolving in liquids when concentrations and partial
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pressures are reasonably low, which is normally the case. As concentrations and
partial pressures increase, deviations from Henry's law become noticeable. This
behavior is very similar to the behavior of gases, which are found to deviate
from the ideal gas law as pressures increase and temperatures decrease. For this
reason, solutions which are found to obey Henry's law are sometimes called ideal
dilute solutions.

6.2 Formation of Bubbles
An introduction to the phenomenon of bubble formation is presented in the
following section. Firstly, and in more detail, the pressure aspects are discussed.
Secondly, general remarks on other physical and thermodynamical causes is
made.

6.2.1 Pressure E�ects (cavitation)
The formation of bubbles (or cavitation) is an everyday phenomenon. Whenever
liquid is present and is agitated in some manner bubbles might appear. Take,
e.g., a ship propeller where cavitation is a problem as erosion reduces the life-
span of the blades1 and energy loss decreases e�ciency (stalling).

The study of cavitation is somewhat similar to the measurement of tensile
strength of solids. Suppose water is put into a cylinder sealed at one end with
a piston. If the piston is pushed towards the liquid, with a force F , it will be
under a positive pressure P = F/A where A is the area of the piston. By sign
convention (see Fig. 6.1) forces on a �uid element are de�ned as

dF = −Pds, (6.2)

where ds is the surface element vector. In this 2D case ds = n̂dx or ds = n̂dy
where n̂ is the unit normal to a surface. A positive pressure in a �uid corresponds
to a force pushing on liquid elements and vice versa.

Imagine as sketched in Fig. (6.1) that the piston is pulled. There is a force
F = (−F, 0) acting on the piston, the result of this action depends highly on the
speci�c situation. If there is an air bubble present in the water it will expand
and the piston will move (fall). As F increases the pressure in the bubble drops,
P = P0 − F

A , towards zero. The ideal-gas law

PV = nRT (6.3)

predicts that the bubble volume will expand (a reasonable assumption is that
nRT is constant) without limit.

Now, if there is no air bubble present in the water, the piston might for a
small force F move a little distance down, and stay there. This displacement
happens as the liquid can expand, it has a bulk viscosity ζ, see Sec. 2.2. Normally
the bulk viscosity is of little consequence because most �uids behave as if they

1Whenever the bubbles implode on the surface of the blades the in�ux of water (small jet)
erodes the blades at the given place.
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Figure 6.1: Negative pressure in a liquid P < 0 results in a positive force on liquid
elements, i.e., a positive normal stress as ds and dF are pointing in the same direction.

were incompressible. Compressibility is introduced in the governing equations
through the so-called dynamic pressure

P = P0 + ζ∇ · u. (6.4)

P0 is the static pressure and u is the velocity �eld in the liquid, see Chap. 2. For
an incompressible �uid the conservation of volume requires ∇ · u = 0 so that
P = P0. Hence, after the small expansion the liquid stays in a state of tension:
there is a negative pressure (P = −F

A ) and hence positive normal stress in the
liquid, τii = −P n̂ = F

A n̂. As shown in Fig. 6.1 the normal stresses on a volume
element are directed outwards (positive stress and negative pressure).

The state described above is only meta stable. If the force is increased further
(still without the presence of an initial bubble) a bubble might form and lower
the energy of the system (the piston falls). Before such a bubble can form the
system has to overcome an energy barrier. Some simple physical considerations
regarding the formation are presented in the following.

The bubble forms after nucleation, i.e., formation of a cluster of enough gas
molecules being stable (generally about 10 molecules in diameter, Atkins [6]).
The cluster should be big enough to withstand di�usion from its surface. It
is very general that there is an energy barrier associated with nucleation. In
our case the barrier arises as the liquid-gas transition is discontinuous (of ��rst
order�). The barrier exists as the liquid-gas interface has a �nite energy per unit
area, the surface tension σ. The formation of a bubble with radius R hence costs

∆ES = 4πR2σ (6.5)

that is surface tension times area. And the work of the negative pressure over
the bubble volume is

∆EPV =
∫ R

0

P A dR =
∫ R

0

P4πR2dR =
4π

3
R3P. (6.6)
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The total energy of formation being

∆E = ∆EV + ∆ES = 4πR2σ +
4π

3
R3P. (6.7)

At negative pressures (P < 0) in the liquid Eq. (6.7) has a global maximum
for a critical radius Rc = 2σ

|P | . The energy at R = Rc establishes an energy
barrier (see Fig. (6.2))

∆EB =
16πσ3

3P 2
. (6.8)

R

DE

DE

R

B

c

Figure 6.2: Energy barrier, ∆EB , the crit-
ical radius Rc needed to be overcome in or-
der to create and expand a bubble.

At a given temperature T thermal �uctuations may enable the system to
overcome the energy barrier ∆EB . The probability of such an occurrence is
governed by the Boltzmann distribution

f(∆EB) = exp
(
−∆EB

kBT

)
, (6.9)

where kB is the Boltzmann constant, Guénault [7]. This is the case as the
Helmholtz free energy can be calculated by the Boltzmann distribution. Note
that from Eqs. (6.8) and (6.9) a constant probability for decreasing temperatures
would require the pressure to drop proportionally to − 1√

T
. But this is not

physically correct, as there is a limit to the force with which one molecule
can act on another. When the pressure reaches the �nite �spinodal pressure� the
�uid will stretch without limit.

After these considerations it is obvious that at only slightly negative pres-
sures the liquid can exist a long time in a state of tension. The energy barrier
∆EB is large and the chance of formation is small. Though this state of nega-
tive pressure requires the liquid to be very clean. If the liquid contains dissolved
gases the formation is much more likely. Bubbles also tend to form preferentially
on walls or on dirt particles in the liquid (nucleation is easier). Bubble forma-
tion on walls or associated with dirt is called heterogenous nucleation. Whereas
formation in the bulk of an ideal liquid is called homogenous nucleation.

6.2.2 Other Causes
The bubble formation due to pressure drops was presented in the previous sub-
section. The bubbles might also form due to chemical electrolysis e�ects at
electrodes. Electrodes are, e.g., present in electroosmotic (EO) pumps used in
micro�uidic devices. Finally, heating of devices may cause bubbles to form: liq-
uid might evaporate or dissolved gases condensate and expand.
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Chapter 7

A Short Review of
Microchannels

The previous chapters have developed many aspects of the bubble phenomenon.
Focus has been put on liquid gas interfaces as well the physics of triple points.
The theory has to some extent been applied to contracting channels (sudden
and tapered). So far it has only been hinted that the surface tension e�ects
actually are the prevailing forces when dealing with two-phase �ows at mi-
croscale. The present chapter is meant as a link between the studied theory,
actual channels used in micro�uidic devices, and the simulations later discussed
in Chap. 9 and Chap. 10. The chapter shortly reviews some basic characteristics
as well as presents the bubble related problems described in this thesis. Obvi-
ously the short review nature of this chapter does not cover all aspects of the
very wide subject of �Microchannels�. Extremes such as highly viscous liquids,
non-Newtonian liquids, specialized geometries, special fabrication methods, spe-
cial materials, etc., may very well di�er from the following generalities.

7.1 Dimensions
Dimensions of actual micro�uidic devices vary over a broad range. Channel
widths vary from a few micrometers to tenth of millimeters and depths from
a few hundred nanometers up to a millimeter. The small devices are generally
fabricated by etching silicon whereas the larger devices may be made as polymer
structures.

At Mikroelektronik Centret (MIC) polymer structures are made in PMMA
(polymethylmethacrylate) using laser ablation and hot embossing. This tech-
nique is fast, quite e�cient, and cheap. The smallest channels are about 10 µm
deep and 50 µm wide whereas large channels may easily be 1000 µm deep and
several millimeters wide. One problem is that the small channels generally have
Gaussian-like cross sections see Fig. 7.1. Wider channels are made up of several
smaller channels cut side to side as illustrated in Fig. 7.2. Thus the channel cross
section is more or less rectangular. The open channels are closed by bonding a
lid on top.

Roughness appearing in polymer channels may have length scales up to
10% of the actual channel width/height (information most kindly provided by
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Figure 7.1: A scanned cross section of an actual microchannel made in PMMA. The
channel is 50 µm deep and 200 µm wide. The �gure is most kindly provided by Martin
F. Jensen, MIC and Teknologisk Institut, [46].

w

h

PMMA
hR

Figure 7.2: Cross section of a wide microchannel. The channel width w, channel height
h, and roughness scale hR are shown.

Teknologisk institut, [46]). Hence hR < 0.1 h in Fig. 7.2. The speci�c nature of
the roughness and the quality of the channel structures depend on the material
properties of the polymer used.

7.2 Physical Characteristics
Flows in micro�uidic devices are driven by pumps (e.g., electro osmotic or me-
chanical) delivering pressures from a few Pascals to several thousand Pascals.
Typical mean �ow velocities vary from a few millimeters per second to many
centimeters per second. Corresponding to volumetric �ow rates of, e.g., 1 to
10 µl s−1 in channels with 50× 200 µm2 cross sections, Chang et al. [47].

To illustrate the properties of micro�ows, regimes for the dimensionless num-
bers, introduced in Sec. 3.6, are presented in the following. The case of water
at 300K (σ = 0.0725 J m−2, ρ = 103 kg m−3 and µ = 10−3 Pa s) is used as an
example,

10−5 < Ca ≡µU

σ
< 10−2 with 10−3 ms−1 < U < 100 ms−1 (7.1)

10−2 < Re ≡UL

ν
< 101 for L = 101 µm (7.2)

100 < Re ≡UL

ν
< 1000 for L = 103 µm (7.3)

10−5 < Bo ≡ρgL2

σ
< 10−1 with 101 µm < L < 103 µm (7.4)
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and ∆c ≡
√

σ

ρg
≈ 2.5× 10−3. (7.5)

The above characteristic Bo and Ca numbers con�rm that the surface tension
related forces are dominating gravity and viscous forces, respectively. Moreover
the Reynolds number con�rms that �ows in microchannels generally are laminar.
Transitional Reynolds numbers are classically about 2000 or 2300, but in the
micro�uidic case new assumptions have to be made, Gravesen et al. [48].

7.3 Problem Areas
As illustrated above, but also mentioned earlier, the presence of bubbles in
microchannels may be problematic as surface tension related forces are domi-
nating. If they do not have a speci�c purpose bubbles should be avoided. From
the theory discussed in Chap. 5 it is evident that the pressures needed to move a
bubble in a channel of radius r is geometry (curvature) and friction related. The
friction part is proportional to α/r where α is a material speci�c parameter. The
geometry related part is non-zero as soon as the tube radius changes (given by
the contact angle description and the Young-Laplace equation). This last part
is proportional to σ/r. The resulting blocking or clogging pressures may be of
several thousand Pascals.

Even if gas bubbles can be totally avoided in operational micro�uidic devices
the surface tension e�ects still have a practical relevance in the initial �lling of
the device.

Investigating geometrically related properties of devices is thus very impor-
tant. A microsystem might be ruined by only one problematic geometric feature.
Analytical work and simulations hence play key roles in the development of ac-
tual devices. It is far less expensive and less time consuming to make a simulation
than to fabricate and test a possible defect device.

7.4 Removing Bubbles
If bubbles are present in micro�uidic devices several active methods may be
used to remove them. They are here listed and shortly commented:

• Degassing: Removing bubbles or dissolved gasses by chemical or physical
means.

• Control of surface tension: In�uencing the behavior of bubbles by in�uenc-
ing their interfacial surface tension by use of electric �elds, temperature
gradients or surfactants.

• Vibrations: Methods involving the use of high frequent sound induced
vibrations have also been suggested as means of dealing with clogging
bubbles.

• Bubble traps: During the work with the thesis a passive method to handle
the bubble problem was devised. The idea is to trap the bubbles at speci�c
locations within the given microsystem. The pressure drop associated with
more or less curved surfaces, described by the Young-Laplace equation, is
utilized in a positive way.
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Basic ideas behind the passive bubble trap are further discussed in Sec. 9.5.
where a speci�c bubble trap device is modelled using the commercial CFD-
ACE+ software. The trap is used as one of the simulation examples of Chap. 9.
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Chapter 8

Commercial Software

The problems and envisioned solutions described in the previous chapter will,
in the following parts of the thesis, be addresses using the commercial simu-
lation program CFD-ACE+ [53] in combination with theoretical results and
home designed Matlab programs. It is thus important to have an understand-
ing of CFD-ACE+ as it is going to be utilized to investigate/illustrate physical
phenomenon related to �ows in microchannels in the presence of bubbles. The
present chapter presents the actual software and models whereas actual exam-
ples of phenomenon are given in the following simulation chapters.

CFD-ACE+ is a commercial multi-physics program package providing ge-
ometry, grid generation, solver, and visualization facilities all on a graphical user
platform. The package includes the following applications:

• CFD-GEOM: geometry and grid generation.

• CFD-GUI: solver set-up interface.

• CFD-ACE(U): the solver/engine.

• CFD-VIEW: results viewer (post processing).

The CFD-ACE(U) solver includes several physical modules for, e.g., heat
�ow, turbulence, plasma, etc. In the current thesis only the �ow and the free
surface VOF (Volume-Of-Fluid) modules are used. The later VOF module is of
special interest in this thesis as it enables the simulation of gas bubbles within
a given liquid. Thus it is important with an insight in its implementation and
especially its handling of the surface tension e�ects as well as solid boundary
conditions, e.g., speci�cation of contact angle.

Manuals are, of course, provided with the software. They are describing
the applications (user interfaces, etc.) as well as including some numerical and
physical considerations. The speci�c physical models are presented and relevant
references are provided. Moreover the CFD-ACE+ license provides a support
facility where an e-mail correspondence with the program developers is possible.

The two following sections present the �ow and VOF modules and point out
problems and issues where to be cautious. The third presents a small listing of
bugs. At last the CFD-ACE(U) solver is tested on several cases.
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8.1 The Flow Module
The �ow module is the core element of the CFD-ACE(U) solver and is gen-
erally used in most applications of the CFD-ACE+ package. The module is
intended for simulating almost any gas or liquid �ow within a certain geometry.
It �nds the velocity and pressure �eld by solving the relevant momentum and
mass conservation equations, i.e., the continuity equation and the Navier-Stokes
equations. The equations are solved within the geometrical restrains with ap-
propriate boundary conditions. CFD-ACE(U) solves the equations by a �nite
volume method, which consists of the following steps:

• Formal integration of the governing equations over all grid cells (control
volumes).

• Discretization of the integrated equation involving �nite di�erence like
schemes. Each type of �ow term in the equations are handled specially,
i.e., transient (evolution in time), convection, di�usion, and source terms.
The integral equations are hereby converted into a system of algebraic
equations.

• Solution of the algebraic equations by iterative methods and ensuring cor-
rect linkage between pressure and velocity �eld.

It is here worth noticing that the �rst formal integration step results in an
exact expression for the conservation of relevant physical quantities. This clear
relation between numerics and underlying physical conservation laws is one of
the main strengths of the �nite volume method1. Hence the rate of change of a
quantity in a control volume is the sum of the net �ux due to convection and
di�usion into the control volume, and the creation of the quantity in the volume.
The velocity-pressure coupling is carried out through the mass conservation
equation in an iterative procedure. In CFD-ACE(U) the so-called SIMPLEC2

correction algorithm is used for the iterative purpose.

Solver Settings
In the CFD-GUI it is possible to tune on several numerical parameters in�uenc-
ing the solution convergence. Additionally several output options are available.
The numerical parameters are:

• Maximum iterations: The number of iterations allowed.

• Convergence criterion: The minimum reduction in residual for each vari-
able (e.g., 0.0001 is four orders of magnitude).

• Minimum residual: A minimum residual at which to brake the iteration
procedure (if previous criterion is not applied).

• Inertial relaxation: Under-relaxation parameters for the velocity and pres-
sure correction equations. Increase the value adds stability at the cost of
slower convergence.

1This concept of clarity is very clearly presented in a very good introductory book on the
subject by Versteeg and Malalasekera [39]

2Semi-Implicit Method for Pressure-Linked Equations Consistent
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• Linear relaxation: Under-relaxation for the linear pressure scheme. De-
creasing the value adds stability at the cost of slower convergence.

The residuals are discussed below. The under-relaxation parameters are used
to constrain the change in a variable from iteration to iteration, preventing
divergence of the solution. Generally the default parameters are suitable though
experience shows that when including the VOF module the inertial relaxation
should be increased. The maximum iterations should at least be set to 40 or 50.

Furthermore it is possible to choose the speci�c numerical spatial di�erence
schemes used. It is also possible to choose the given solver, e.g., preconditioning
method, pressure-velocity coupling method, etc.

Residuals
The convergence of a solution can be assessed by monitoring the residuals during
the iteration process. In the present case the relevant parameters are pressure
and velocity �eld. In a time dependent simulation the development of the resid-
uals are presented at every time step. The rate of change of a residual R is in
the CFD-GUI plotted as function of the iteration count i. The residual Rn

i at
iteration i and time step n (that is time dependent) of a generic variable φ is
de�ned as,

Rn
i =

∑

all cells
|φn

i − φn
i−1|. (8.1)

The residuals are in CFD-ACE(U) not normalized by, e.g., φn
i . Convenient con-

vergence criterion are thus given in the rate of change of a residual (the number
of decades it decreases) and not by a given lower bound. The de�nition of the
residual is unfortunately not given in the CFD-ACE+manual, but was obtained
through the e-mail support facility.

8.2 The VOF Module
The VOF module includes free surface capabilities in the CFD-ACE(U) engine.
It allows for the simulation of a mixture of two incompressible and immiscible
�uids including surface tension e�ects. The basis of the VOF interface tracking
method was presented in 1980 by Hirt et al. [40], but recently extended in 1995
by Rider et al. [41]. Latest in 1996 Rider et al. [42] have made great progress
in including the surface tension e�ects in a more consistent manner. The VOF
method used in CFD-ACE+ is mainly based on these last two articles. The
research made in the VOF algorithms has a great history and is still in progress
at the Los Alamos National Laboratory in the US. The performances of the
VOF method compared to other surface tracking models are presented in an
article by Rider and Kothe [43]. It is made clear that the latest VOF algorithms
are very powerful tools and are still extendable.

Now, assuming that the two �uids involved are a liquid (e.g., water) and a
gas (e.g., air) the essential features of the VOF interface tracking method are
as follows: the distribution of liquid and gas within the computational grid is
accounted for using a single valued scalar variable F . F speci�es the volume
fraction of liquid in gas in a given computational grid cell. Hence if F = 1 a cell
is full of liquid, if F = 0 a cell is full of air, and in a cell containing an interface
0 < F < 1.
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In a computation an initial prescribed interface topology (initial condition)
is �rst used to compute �uid volume fractions F in each computational cell. This
requires a calculation of the volumes divided by the interface in each cell. The
exact interface information is then neglected in favor of the scalar information
lying in F . The evolution of F is then governed by a transport equation,

∂F

∂t
+ ∇ · (uF ) = 0, (8.2)

being solved together with the momentum and continuity equations. The new
interface topology is then inferred and reconstructed solely based on the local
information lying in F . Several reconstruction schemes are available. Though
the e�ects of surface tension require the use of the most advanced scheme: the
piecewise linear interface construction (PLIC) method. In the PLIC scheme
the liquid-gas interface is assumed to be linear (planar in 3D) and can take any
orientation within a cell. In Fig. 8.1 approximate F values are given in every cell
together with the linear surface approximation. The reconstruction is required
at every time step to include the necessary back-coupling of surface forces to the
momentum equations as well as �ux calculations. The use of the VOF surface
tracking together with the PLIC reconstruction method maintains the interface
completely in a one cell layer, Rider et al. [41].
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Figure 8.1: An example of a reconstruction of a circular arc (grey region) using the
PLIC approximation of piecewise linear interfaces in each computational cell. Further
a zoom is made of one cell where the components of the CSF surface physics model
are included: surface force fs, CFS volume force Fs, surface normal n̂, cell dimensions
h, and surface point xs.

The physical e�ects localized at the �uid interface are modelled by the con-
tinuum surface force (CSF) method. This part of the VOF module is of sig-
ni�cant interest in relation to the bubble problems at hand. The CSF method
can in principle handle all surface processes, e.g., surface tension (of course),
gradients in surface tension (Marangoni e�ects), phase changes, etc.3 The given

3The CSF method was originally developed for surface tension. However the basic approach
of the CSF method lends itself well to interface physics in general, i.e., surface phenomenon
other than surface tension can be encapsulated in the CSF model, Rider et al. [41].
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surface process is applied to all surface cells and replaced by a volume process
having an integral reproducing the desired e�ect.

As an example of the CFS model, surface tension forces are reformulated as
a volume force Fs satisfying,

lim
h→0

∫

∆V

Fs(x)dV =
∫

∆S

fs(xs)dS, (8.3)

where xs is a point on the surface, ∆S is the portion of the surface lying within
the small volume ∆V , and h the grid size. See the �zoom� on Fig. 8.1 for details.
The surface tension force fs is given as

fs(xs) = 2σH(xs)n̂ +∇sσ, (8.4)

where ∇s is the surface gradient. The �rst term is the normal force and the sec-
ond is the tangential force, i.e., Marangoni e�ect. In CFD-ACE+ the tangential
forces occur when σ is made temperature dependent by use of the heat transfer
module. The surface mean curvature is given through the surface normal as

H(xs) = −∇ · n̂. (8.5)

The above formulation of the surface tension reduces to

Fs = fsδs (8.6)

where δs is a delta function. δs is basically a function being zero in all cells not
containing an interface and introduces a suitable weighting in cells containing
an interface. As the product H h → 0 the line integral of Fs(xs) should yield
the Young-Laplace pressure jump 2σH. As Rider et al. [42] point out it remains
an open question whether or not the CSF should be coupled to the momentum
equations exactly as a body force.

Some issues in the current state of development of the CSF method need to
be addressed further. The exact de�nition if the surface delta function and the
proper discretization of H and n̂ are still open questions. Within the area of
this thesis the correct de�nition of triple points at solid boundaries should be
investigated in further details. Still, the CSF formalism presents characteristics
that surely allow for interesting developments in the future.

The VOF and CSF models in the current CFD-ACE+ version are mainly
based on the work presented by Rider et al. [41, 42]. Incorporation of surfactants
in the CSF model is, e.g., presented in an article from 2001 by Renardy et al.
[44]. Improved techniques for handling the surface tension and especially for
determining the curvature are also available, e.g., by higher order polynomial
approaches.

Solid boundaries
Of great interest are the boundary conditions at the contact line on solid walls.
In the current CFD-ACE+ version it is only possible to specify a given static
contact angle. This is implemented numerically by specifying a given surface
normal nb in the computational cells at the boundaries. The e�ects of moving
contact lines, i.e., dynamic contact angles and wetting phenomenon are not
modelled properly with this lone condition, Rider et al. [42, 41]. Furthermore
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neither local solid boundary conditions (roughness and surface chemistry) nor
local �ow conditions (velocity, viscosity) are currently properly incorporated.4

The limitations in the speci�cation of the wall condition can also create
problems in simulations. Whenever a liquid-gas interface approaches a solid
wall and enters a wall cell the surface normal nb is de�ned in that cell. This
may give rise to false wall adhesion e�ects. Moreover problems arise at solid
wall when the Marangoni e�ects are incorporated. A false gradient in σ appear
in wall cells; σ is set to zero within the wall.

A positive aspect of the VOF model lies in its capability of indirectly having
a high resolution of wall wetting �lms. This is the case when a non-wetting wall
condition is chosen. Because of the way the F -function de�nes an interface it
is possible to have an e�ective higher resolution than the grid dimension h. An
illustrative example is given in Figure 8.2 where a wetting layer of thickness
h0 = Fh < h is presented.

Liquid

Gas

F=0.3

h

h0

Figure 8.2: The VOF model is capable of an ef-
fective higher resolution than the grid dimension h.
The liquid layer has a thickness h0 = Fh.

Still the �ow in the �lm is only represented by one velocity over the thickness
h0. More comments and examples of these e�ects are given in the following
simulation chapters.

Time-Stability
There are two time step stability conditions related to the VOF module. First
of all stability of the solution algorithm requires that an interface does not cross
more than one cell in a time step δt. The so-called CFL number, for a given cell,
de�ned by

CFL =
|v|δt

h
, (8.7)

speci�es the distance crossed by an interface travelling at velocity v, as a fraction
of local cell length scale h. Time-steps should thus be chosen as,

δt < δtc = CFL hc

|vc| , CFL < 1, (8.8)

where c runs over all interface cells in the computational grid. Generally it is
necessary to choose the CFL number less than 0.2. In the CFD-ACE(U) solver
an automatic time step option automatically ensures stability.

Secondly the introduction of surface tension in the CSF model having the
explicit back coupling to the momentum equations yields another restriction.
The maximum allowable time step δtσ to resolve the propagation of capillary
waves requires

δt < δtσ ∝ h3/2

σ
. (8.9)

4The new 2002 version of CFD-ACE+ is expected to includes a surface chemistry package.
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The above factor is de�ned by Rider et al. [42]. The factor is related to the
oscillation period of capillary waves. By use of the simple dispersion relation
given in the later Eq. (8.12) it is found that δtσ ∝

√
ρ/σh3/2; numerical practice

states that the maximally allowed wave number kw is given by kw,max = π/h
where h is the grid size. Typically δtσ is a little smaller than δtc. Though δtc
can be kept as upper bound for δt by introducing some numerical damping of
capillary wave. The viscosity is increased arti�cially in cells adjacent to surface
cells.

Grid
The generation and choice of the calculation grid (made with CFD-GEOM) are
generally of great importance in CFD, but especially when using the VOF free
surface module.

Firstly, a general rule-of-thumb when increasing the grid resolution in every
direction by a factor 2 the calculation time will, in a 2D grid, increase by a
factor 2× 2× 2 = 8. This is because the number of cells increase by 2× 2 and
as the cell dimensions decrease by a factor 2 the time step does too, following
Eq. (8.8).

Secondly, an implication of the geometric handling of the surface (PLIC
reconstruction), the grid quality will in�uence the solution quality. In regions
where the interface pass the in�uences are:

• Orthogonality: Directly a�ects the accuracy of �ux calculations.
• Smoothness and Aspect Ratios: A�ects the accuracy of the surface recon-

struction.
According to the CFD-ACE+ manual aspect ratios above 10 should be totally
avoided. The ideal grid is hence a square or cubic grid. The number of cells
needed to resolve the shape of interfaces is also important. Likewise CFD-ACE+
recommends a minimum of 8 cells to resolve a gap. The restrictions given on
the grids and the fact that merged grids are not handled by the VOF module
yield some limitations. It is hard to increase the resolution of some parts of the
calculation area without increasing the overall resolution.

Grid considerations and grid dependency of solutions are of course going to
be discussed in the simulation chapters and specially in the test case section
below.

VOF-Solver Settings
When using the VOF module it is possible to activate two �numerical� options.
Firstly, a removal of �otsam and jetsam, i.e., removal of small erroneous gas or
liquid droplets that may arise in excessively skew grids. Secondly, the surface
capillary waves damping option can be activated. This option is quite useful
when un-physical initial conditions are stipulated, e.g., square bubbles. It pre-
vents long term oscillations of the liquid surface as it deforms to a physically
correct bubble.

8.3 Bugs
During the course of the project a few bugs and minor errors have been noticed
in the CFD-ACE+ package. In the following they are listed:
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1. When the VOF module is in use problems can arise when specifying the
initial liquid-gas distribution. If two geometries overlap in the speci�cation,
e.g., a square and a circle gas area in a liquid, small liquid droplets appear
within the gas region. This behavior arises because of the way surfaces
are de�ned through the volume fraction F -function. Speci�cation of more
physically correct initial conditions are hereby complicated. When the
solver deforms a non-physical geometry to a physical one numerical errors
might appear in the F distribution (so-called �otsam and jetsam) moreover
the transformation can be time consuming.

2. In the initial conditions menu in the CFD-GUI it is possible to import pre-
viously simulated data as a new initial condition. It is however not possi-
ble to change the boundary conditions. The solver keeps the old boundary
conditions, even though the user seems to change them.

3. If the Marangoni e�ect option is selected together with partial wetting
conditions (0o < θ < 180o) erroneous tangential e�ect appear at solid
walls. This last bug is discussed further in the static meniscus test case
below.

Together the �rst two bugs are quite inconvenient as it would, e.g., be nice
to create a �natural� bubble and use it as an initial condition in several di�erent
runs.

8.4 Test Cases
It is good CFD practice to test the reliability of the solver/engine on simple test
cases. Firstly, the CFD-ACE(U) solver is tested on a 2D and a 3D pure �ow
example. The numerical results are compared to theoretical results and a grid
analysis is carried out. Furthermore a simple static 2D interface is examined.
All relevant data is presented in Excel sheets in Appendix H.

8.4.1 2D Couette Flow
To introduce the test cases the simple 2D pressure driven �ow between two
stationary parallel plates is investigated (Couette �ow). The plates are at a
distance d and the pressure drop ∆P is over the length L. The parabolic velocity
pro�le of the �ow is presented in Appendix B. The problem is steady state. The
solution dependency with respect to grid resolution and convergence criteria
(residual) is investigated.

Data: d = 400 µm L = 1600 µm, ∆P = 200 Pa, ρ = 1003 kg m−3,
µ = 8.55× 10−4 kg(sm)−1.

An example of the simulation results is presented in Fig. 8.3.

Conclusion
The simulations show good agreement with the theoretical results. Using the
�nest grid and the strongest convergence criterion the deviation in the mean
velocity U is less than 1%. Though the simulation time was about 50 minutes.
The results show the typical grid dependency and convergence behavior. The
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(a) Theoretical and simulated velocity pro�le.
The data is imported in Matlab using the �line-
plot� command in CFD-VIEW.

(b) Simulated velocity pro�le as a scaler and
vector plot (snapshot from CFD-VIEW).

(c) The �gure shows the coarsest calculation gird (Grid 1) and the pressure
pro�le. The pressure is linearly decreasing in the �ow direction.

Figure 8.3: An example of simulations results of the Couette �ow. The results are for
the coarsest grid (8×32 cells and h = 50 µm), but �nest residual condition (R < 10−4).

solution is more exact for �ner grids though the number of iterations needed to
reach the convergence criterion is higher. It should be pointed out that the grid
cells are chosen square as this is required when using the VOF module.

8.4.2 Poiseuille Flow
As a second test the Poiseuille �ow in a cylindrical tube of radius a and length L
is chosen. The theoretical description is presented in Appendix B. Even though
this �ow is not as relevant as the above 2D case it is used to illustrate some
of the properties of CFD-GEOM and CFD-ACE(U), and as a reliability test.
Grids with three di�erent orthogonality properties are used to mesh the circular
cross section of the pipe. The properties of the three grids in Fig. 8.4 are listed
on the Poiseuille �ow Excel sheet in Appendix H.

Data: a = 150 µm L = 900 µm, ∆P = 100Pa, ρ = 1003 kg m−3,
µ = 8.55× 10−4 kg(sm)−1.

An example of a simulation using grid 1 is presented in Fig. 8.5. Note the
positioning of the r-axis. It is placed where data, for the comparison in velocity
pro�les, is collected.
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(a) Grid 1: Regions with bad
orthogonality at edges.

(b) Grid 2: Good orthogonal-
ity at edges and good aspect
ratios.

(c) Grid 3: Good orthogonal-
ity at walls and enhanced wall
resolution.

Figure 8.4: The three grids used in testing CFD-ACE(U) on the Poiseuille �ow.

Figure 8.5: Simulation of the �ow in a cylindrical tube of length L and radius a. Three
cut planes are placed where the axial velocity, uz(r) represented.

Conclusion
Generally all three grids reach the desired solution, within an acceptable margin
of error (≈ 3%), in a small number of iterations. However, it is important to
be aware that with an increasing number of iterations the solution seems to
worsen. The measure given by the mean and maximal velocity are not solely
indicative of the correctness of a solution. The overall measure of the residuals
should also be considered. They decrease drastically with an increasing number
of iterations. Firstly, it is important to determine the quantity being represen-
tative of a correct solution. Secondly, a seemingly correct solution may be due
to luck.

In the present case it should be remarked that grid 1 has a lower number
of cells than grid 2 and 3. Identical number of iterations are hence not directly
comparable. The results are generally speaking satisfactory and comply with
theory. It is here already clear how numerical results should be apprehended
with a certain amount of scepticism.
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8.4.3 2D Static Interface
This third test case is very relevant in relation to the thesis. The VOF module
is activated and a free surface is introduced. A �at interface is initiated and set
to reach a natural static position with a given static contact angle θ as wall
condition, see Fig. 8.6. The dynamics of the problem are only controlled by the
surface tension as no external driving pressures or velocities are applied. The
test is intended to give insight in some of the basic numerical problems that
may arise when using the VOF module.

N
 c

el
ls

gas liquid

qInitial
interface
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d

Figure 8.6: Simulation set-up where the
initial interface is represented as a dotted
line. Static contact angle θ, cell dimensions
a and b, channel width d. The cell aspect
ratio is de�ned as a/b and the resolution
over the channel width is N .

The pressure jump over the interface ∆Pi is used for means of evaluating
the simulation and is compared to simple theoretical results. Three contact
angles θ = 300, θ = 500, and θ = 700 are used. Focus is set on the solution
dependency with respect to the grid and especially surface damping of interface
capillary waves. All relevant data is found in the 2D Static Interface Excel sheet
in Appendix H. Track of ∆P is kept in time using the �Monitor Point� option
in CFD-GUI, the data is stored in a .MON �le. The pressure over the liquid-gas
interface is readily found using the Young-Laplace equation,

∆Pi = σ

(
1

R1
+

1
R2

)
= σ

2 cos θ

d
, (8.10)

where the 2D nature of the problem imposes R2 = ∞.

Data: d = 300 µm, ρliquid = 1003 kg m−3, ρgas = 1.16 kg m−3,
µliquid = 1.00× 10−3 kg(sm)−1, µgas = 1.85× 10−5 kg(sm)−1,

σ = 7.25× 10−2 N m−1.

Grid and Aspect Ratio
As the surface is deforming towards the natural position capillary waves on the
interface appear (discussed further below). To decrease these oscillatory e�ects
extra numerical viscosity is added around the surface. Oscillations persist after
many time steps as seen in Fig. 8.7. ∆Pi is found as an average over a number
of time steps and the standard deviation determined.

For the lowest recommended resolution of N = 8 cells the discrepancy be-
tween theory and simulations is less than 13%. With an increasing resolution
the error drops. The error is seen to depend on the aspect ratio a/b, but also on
the contact angle. This might be caused by some geometric implications: how
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Figure 8.7: Time evolution of ∆Pi for 1.6 × 10−2 s < t < 3.0 × 10−2 s with N = 16,
a/b = 1. The mean value is found to be 451Pa with a deviation of ±4Pa.

the interface lies in a given boundary cell, etc. The best results compared to
calculation time are obtained for N = 16 and a/b = 1 with the use of extra
damping. The calculation time was less than 25 min. An example of the �nal
static meniscus is presented in Fig. 8.8.

Figure 8.8: The static meniscus presented as a
contour-like plot of the the F -function. Even though
CFD-ACE(U) internally reconstructs the interface,
as a piecewise linear curve, at every time step it is
not possible to retrieve the information into CFD-
VIEW. The smeared out aspect of the interface: it
is only a contour plot of the F values. The point
where the pressure data is collected is displayed.

Capillary Waves
As mentioned the deformation of the meniscus gives rise to an oscillatory behav-
ior of the interface, namely, surface tension induced capillary waves. These oscil-
lations are in turn re�ected in the time development of ∆Pi as shown in Fig. 8.7.
Moreover the calculation time is increased as the CFL condition, Eq. (8.8),
reduces the time steps because of rapid oscillations of the interface. The os-
cillations are prevented by including the extra numerical viscosity around the
interface. On a high resolution grid, N = 40, the actual calculation time varies
from 45 min to 3 h for high and low damping, respectively.

To investigate the capillary waves on the interface their oscillation period
Tn is compared with the simple sinusoidal theory period Ts. The dispersion
relation for non-damped sinusoidal pure surface tension driven capillary waves,
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Probstein [2], is given as (
ω

kw

)2

= kw
σ

ρ
, (8.11)

where ω is the angular velocity, kw the wave number, σ the surface tension and
ρ the density of the liquid. Rearranging Eq. (8.11) yields

Ts = 2π

((
2π

λw

)3
σ

ρ

)− 1
2

, (8.12)

where Ts is the period and λw the wavelength. The wavelength is taken as the
meniscus length

Lm = (π − 2θ)
d

2 cos θ
. (8.13)

In order to be thorough two di�erent simulations with no surface damping
are made: (1) keeping the original physical data, and (2) increasing the σ/ρ ratio
by a factor 4. This should in turn yield a period half the original. The period
is indirectly determined through the time evolution in the pressure jump. The
two cases are shown in Fig. 8.9.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

200

250

300

350

400

450

t

∆ 
P

T
n,1

 

2 4 6 8 10 12

x 10
−4

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

t

∆ 
P

T
n,2

 

Figure 8.9: Time evolution of ∆Pi. On the right �gure the ratio σ/ρ has increased by
a factor 4 compared to the left. The �rst period is named Tn,1 and the second Tn,2.

In the �rst case the period was read of to be Tn,1 ≈ 3.1 × 10−3 s and the
theory showed Ts,1 = 2.8 × 10−3 s. In the second case Tn,2 ≈ 1.5 × 10−3 s and
Ts,2 = 1.4×10−3 s. Theory and numerics are seen to concorde rendering probable
that the oscillations are of capillary nature. The large oscillations are hence
physically predictable whereas the smaller high frequency oscillations might be
caused by numerical instabilities. Via the introduction of the extra numerical
viscosity the long period oscillations are reduced drastically. A better value for
∆Pi is hence obtained faster. The numerical damping is thus very important as
it is not very often possible to initiate the �ow with physically correct liquid-gas
interface shapes.

Marangoni Bug
The present simple test was used in a last checkup on the VOF module. A
simulation was started with the normal amount of surface damping and the
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initial data however the Marangoni e�ect option was selected. In theory the
results should not be a�ected as the surface tension remains constant. The
simulation did nevertheless show a 100% deviation from theory and the previous
results. The problem arises at the solid walls. Because no value for σ is given
outside the liquid-gas region a large gradient appear in σ at the wall. This in
turn introduces a large erroneous tangential force. This bug is of importance as
the Marangoni e�ect option cannot be used when wetting wall conditions are
being applied.
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Chapter 9

2D Simulations

Aspects of 2D two-phase �ows and geometries are studied and compared with
theory. The simple 2D nature ease the construction of examples and highly de-
crease computation time. Some of the cases investigated in the following have a
nature of �numerical experiments�. The intent is to gain insight into some of the
features of the commercial CFD-ACE+ software. The 2D simulations do also
yield a high amount of insight into speci�c bubble phenomenon and geometries.
The simulations speci�cally provide knowledge needed for the formulation of
design rules related to channel contractions.

The chapter deal with: (1) The dynamical behavior of bubbles moving in
a straight channel is used to investigate capabilities of the free surface VOF
module. (2) Generalized geometric features of channel contractions are illus-
trated by the sudden contraction and the tapered contraction. (3) A geometry
having knobs at walls in used to model roughness. (4) Finally CFD-ACE+ is
utilized to investigate the properties and e�ciency of a novel bubble trap design.

In the subsequent sections a superscript N on a variable corresponds to
the numerical/simulated value, e.g., the theoretical �lm thickness h0, and the
simulated �lm thickness hN

0 .

9.1 Straight Channel
The possibilities o�ered by the VOF module to simulate moving bubbles at
relatively high capillary numbers are investigated in the following. Bearing in
mind, as mentioned in Chap. 8, that the speci�cation of boundary conditions
at triple points is very limited in the CFD-ACE+ package. Basically it is only
possible to prescribe a static contact angle θ. The speci�c local or global �ow
conditions cannot in�uence on the solid wall condition. In turn it is important
to be careful when handling simulations with great variety of �ow conditions.

For a bubble in a straight channel the in�uence of the contact angle and
especially the case of non-wetting bubbles (θ = 0o) is investigated. The depen-
dence, of the pressure drop over the bubble ∆PN

b as well as the thickness of the
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wetting �lm layer hN
0 , with respect to the capillary number

Ca =
viscous forces

surface tension forces =
µU

σ
(9.1)

is of interest. Where U , in the following, is the speed of the bubble, µ is the dy-
namical viscosity, and σ the surface tension. Moreover, the transient/convergence
behavior of the solutions is an important factor from a computational point of
view.

Firstly, the behavior of a non-wetting bubble is examined. A rather rough
grid is utilized as it is intended to investigate the e�ective higher wall resolution
described in Chap. 8. Secondly, the dependency on the choice of contact angle
for a given �ow regimes is investigated.

9.1.1 Wall Resolution and Flow Regimes
Initial Conditions and Set-Up
The behavior of a non-wetting bubble, θ = 0, in a 2D channel of thickness
d = 300 µm and length L = 4200 µm is considered. The initial set-up is depicted
in Fig. 9.1.

L

dx

y

o

h h0

gas

liquid

solid

Figure 9.1: Geometry and initial setup for the wall resolution simulation. Grid di-
mensions h = 25 µm, approximate wetting layer thickness h0 < h, tube length
L = 4200 µm, and tube diameter d = 300 µm.

An initial un-physical square gas area is placed at the end of the tube. The
surface damping property is chosen as the gas bubble obviously will deform
drastically in the beginning of the simulation. A parabolic Couette �ow velocity
distribution is used as the left boundary condition (see Appendix B). The use
of a well de�ned velocity distribution has several advantages. (1) The transient
development of a pressure driven velocity pro�le is avoided. (2) The mean �ow
velocity of the liquid v is known in advance rendering the data collection simpler.

Grid and Cell Choice
The present simulations include capillary numbers Ca < 0.02. In order to illus-
trate the e�ective wall resolution e�ects the cell dimension h should be greater
than the wetting �lm thickness. An initial run was made for Ca ≈ 0.02 where
it was found that h0 < 20 µm. Cells are made square and the number of cells
over the channel N is set to 12 implying h = 25 µm with a total number of
12× 168 ≈ 2× 103 cells.

Data and Transient Behavior
A series of eight simulations is made with the mean �ow velocity v varying

72 Bubbles in Microchannels



Chap. 9 2D Simulations Sec. 9.1 Straight Channel

from 0.01m s−1 to 1m s−1.1 For each simulation ∆PN
b , uN , hN

0 , and Ca are
found. All the data is presented in the �2D Bubble in Tube� Excel sheet found
in Appendix H, section 4.

The data is retrieved when a steady state solution is reached. The solution
is de�ned as converged when ∆PN

b does not vary in time. In the worst case
the simulation took about 40min the actual calculation time depends on v. For
small v and hence small pressure drops the situation is delicate: variations in
∆PN

b due to capillary wave oscillations are of the same order of magnitude as
the actual expected pressure drop (≈ 5Pa).

For the case of the wetting layer thickness hN
0 the situation is however sim-

pler. Remember, hN
0 is found as the cell dimension h times the volume-of-�uid

function value in the given wall cell Fwall (previously illustrated in Fig. 8.2).
The Fwall values stabilizes much faster than ∆PN

b . Basically, the near wall in-
terface is quite restricted in moving. The problematic wall boundary conditions
force the interface to be parallel to the wall in wall cells. Continuity de�nes the
�lm thickness: the liquid area swept away by the bubble plus the �ux in the
�lm must equal the average speed v in front and behind the bubble times the
channel width d. Assuming h0 ¿ d yields

1− w =
v

u
=

d− 2h0

d
. (9.2)

where the amount wu corresponds to the excess speed of the bubble compared
to the mean �ow velocity v.

dx

t

t

1

2

Figure 9.2: Example of a mov-
ing bubble displaced δx during the
time δt = t2 − t1. The �gure de-
picts the F -function values. Blue
is F = 0 and purple is F = 1.

The bubble speed u is de�ned as δx/δt where δx is the change in bubble
position from time t1 to t2 and δt = t2 − t1, see Fig. 9.2. The error associated
with this �manual� method to �nd u is about ±5%.

Results
The motion of the bubble shows the right characteristics in view of the 3D the-
ory presented in Chap. 5. Even though the �lm is located within one cell, and
the �ow pro�le hence is highly simpli�ed, a correct behavior is obtained. More-
over, the velocity u of the bubble is seen to exceed the mean �ow velocity in the
�uid v. The pressure over the bubble does likewise exhibit correct behavior.

1Mean velocities of 0.01m s−1 and 1m s−1 correspond to �ow rates of 0.7 µ Ls−1 and
70 µL s−1 in cylindrical tubes of radius r = d/2. The upper bound might be a little larger
than normal �ow rates used micro�uidic devices.
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Figure 9.3: The simulated data for h0, w, and ∆Pb plotted as function of Ca is
presented as ◦ marks while the �tted curves are full lines.

The collected data is found to depend on the capillary number Ca. The �lm
thickness hN

0 is proportional to Ca1/3,

hN
0 ≈ 0.49

d

2
Ca1/3, (9.3)

and the velocity excess parameter wN = (u− v)/u is also roughly proportional
to Ca1/3,

wN ≈ 0.54 Ca1/3. (9.4)
From Eq. (9.2) it is obvious that h0 and w must depend on Ca in an identical
manner. Finally, the pressure is found to be roughly proportional to Ca2/3,

∆PN
b ≈ 13

2σ

d
Ca2/3. (9.5)

All the numerical factors are found by numerical �t. The simulated data and
the �tted curves are presented in Fig. 9.3.

One simulation is further made using a �ner mesh N = 24 for v = 1. The
values for hN

0 and wN di�er about 10% from the rough grid simulation (N = 12),
Table. 9.1. Because of the �ner grid, h is here less than h0, a slightly more
detailed �ow pattern is hence at hand in the wetting �lm. Though the VOF
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N v/(m s−1) u/(m s−1) Ca ∆PN
b /Pa hN

0 /µm wN

12 1.00 1.16 1.59× 10−2 400 18.5 0.135
24 1.00 1.18 1.63× 10−2 400 20.0 0.152

Table 9.1: Data for low (N = 12) and high (N = 24) resolution grid in moving
bubble simulation.

model enables a partially higher resolution at walls the detail level of the velocity
pro�le can only be increased by a �true� resolution of the wetting layer.

The values for ∆PN
b found in the two simulations concorde. The pressure

curvature routine in the VOF package exhibit robust properties. In the case of
the rough grid the pressure drop is nearly proportional to Ca2/3 as 3D theory
predicts. Whereas the dependence of both h0 and w di�er from the 3D case. This
discrepancy might be related to the two following properties: (1) The description
of the wetting layer is highly simpli�ed. (2) The continuity described by Eq. (9.2)
that relates h0 to u is given in terms of lengths in 2D, whereas it is given in
terms of area ratios in the 3D case,

u

v
=

(
r − h0

r

)2

, (9.6)

r being the radius of a cylindrical capillary tube.

An interesting lesson to draw is that the speci�c details of the wetting layer
eventually might be neglected. The speci�c behavior of a moving bubble with
de�ned static contact angle is investigated in the next section.

9.1.2 Contact Angle and Flow Regimes
As emphasized earlier the boundary condition at the solid wall yield problems.
The speci�cation of a �nite contact angle is not physically correct for bubbles
moving above certain speeds, whereas it for clogged or static bubbles is meaning-
ful. From a numerical point of view the grid size h is seen to play an important
role. The speci�c transition speed, from wetting to contact angle description,
is depending on speci�c surface properties. These facts actually impose restric-
tions on the problems that can be treated. Say a bubble is moving in a straight
channel and suddenly encounters a contraction. It is here di�cult to de�ne the
appropriate conditions for the simulation. In this subsection a few simulations
dealing with the above described problems are discussed.

Firstly a bubble with �nite contact angle θ = 50o is sent through a 2D chan-
nel at relatively high speed v = 0.6m s−1. Channel width d = 300 µm, length
L = 4200 µm, and a grid resolution of N = 12. Six snapshots of the rear end of
the bubble are presented in Fig. 9.4.

The simulation exhibited several strange e�ects. First of all the pressure
over the bubble is highly oscillatory 300Pa ± 150Pa. The liquid-gas interface
did separate from the solid wall to some extent. Strange adhesion like e�ects then
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(a) (b)

(c) (d)

(e) (f)

Figure 9.4: Time series of the rear of a wetting bubble. Small gas �droplets� are ejected
from the rear where the bubble adheres to the solid wall periodically. The droplets are
seen as lighter regions in the pink liquid area.

appear at the rear of the bubble; they are illustrated in Fig. 9.4. These e�ects
are discussed thoroughly later. Small gas droplets are ejected from the bubble
rear, they are in the �gure seen as discolorations near the solid boundary. These
arti�cial e�ects are most probably created as the solver in�uences the interface
normal in wall cells. Runs were also made with θ = 30o and θ = 70o exhibiting
the same conduct.

The same situation is simulated again, but in this case using a �ner grid
resolution N = 24. The liquid-gas interface once more separates from the solid
wall and the adhesion-like e�ects are avoided. As the grid is �ner the wall cell
does not any more contain the interface (Fwall = 1). This means that the inter-
face is free to move in accordance with the governing �ow equations. Compared
to the simulation carried out with θ = 0o the bubble is seen to move slightly
faster, about 2%. However the pressure drop over the bubble and the wetting
�lm thickness are o� with about 20%.

The placements of the relevant pressure and F -function plots on a bubble
(after transient behavior) are depicted on Fig. 9.5. Note especially for the case
in Fig. 9.5(b) how the F values are erroneous. Obviously F = 1 in all of the
wall cell and does not decrease as hinted in the �gure. The CFD-VIEW data
handling program does not provide adequate facilities to display the interface
related data.

At last a simulation is run for v = 0.06 ms−1 and θ = 50o. In this case no
wetting �lm develops. The bubble does nonetheless exhibit a dynamical behav-
ior: there is a pressure drop over the bubble resulting from di�erent curvature
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Figure 9.5: (a) Pressure as function of x plotted over the bubble length, and (b) the
volume-of-�uid function F plotted over the wetting layer. (c) The actual slices where
data is collected are marked on the �gure.

of the rear and front interface.
The �ow behavior in front of a moving bubble, having partial wetting con-

dition 0 < θ < 1800, is capable of creating a wetting �lm. The bubble front
deforms because of the parabolic Couette �ow pro�le. For su�ciently high cap-
illary numbers the interface deformation in combination with a relative back
�ux of liquid near the wall enables a separation. It is paramount to remember
that the wall condition for the interface does not directly change F values in
wall cells. Only the interface normal nb is controlled, see Fig. 9.6(b). When
an interface lies within a wall cells the described conditions can introduce the
adhesion like e�ects.

The situation depicted on Fig. 9.6 is meant to illustrate the numerical ad-
hesion e�ects takin place as a thin liquid layer form and move between the gas
and the solid. The actual wetting layer thickness is represented by F -values as
in Fig. 9.6(a). However, the solver engine CFD-ACE(U) internally places the
interface as shown in Fig. 9.6(b). This numerical handling of wall cells results
in the previously mentioned adhesion like e�ects.

Despite the numerical problems arising at the walls the CFD-ACE(U) solver
showed promising dynamical properties. Regarding the wetting layer the ratio
h0/h is of special importance as it in�uences on possible numerical adhesion
e�ects. After a thorough investigation of the basic dynamic capabilities of the
VOF module the clogging phenomenon discussed in Sec. 5.2 is presented in the
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(a) The colored �gure is a snapshot from the data available in
CFD-VIEW. The bubble and liquid areas are represented as a con-
tour plot of the F -function.

nb

q

F=0 F=0 F=0.2F=0.2 F=0.8F=0.5

(b) In relation to the surrounded dotted area �gure (a) (right) this �gure
is illustrating how CFD-ACE(U) internally places interfaces in wall cells.
The normals nb are predetermined by the contact angle θ. Their vertical
location is determined by the F -values in the given cell (approximate values
are shown).

Figure 9.6: The numerical adhesion e�ects observed in simulations are in this �gure
sketched out. The di�erence between (a) the available F -data, and (b) the actual
internal use of F -values is emphasized.

following.

9.2 Sudden Contraction
The theoretical results regarding the sudden contraction geometry discussed in
Sec. 5.2 are here compared with simulations. Even though all free surface simula-
tions are time dependent the basic outcome after a transient period is here static.
As mentioned earlier CFD-ACE(U) has a robust internal pressure/curvature
routine. The outcome of the simulations are at forehand expected to be good
even for rough computational grids.

A sudden contraction having dimensions D = 260 µm and d = 100 µm is
depicted on Fig. 9.7. The narrow channel has a rather rough vertical resolution
of N = 9, all grid cells are square and identical.

The counter pressure predicted by Eq. (5.13) for θ = 73o and σ = 0.0725 J m−2

is applied to the inlet (left side of the channel). In the 2D case P = 260.9Pa as
the simulations do not account for friction. The gas plug is as expected seen to
be stable and static. A simulation with both inlet and outlet pressures equal to
zero showed that the gas bubble moved towards the left. This corroborates the
prediction given by the �driving pressure gradient� concept described in Sec. 4.6.

9.3 Tapered Channel
The tapered channel geometry is the �nal simple, but important 2D geometry to
be analyzed. Results obtained from simulations are compared with theory. The
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Figure 9.7: A static gas plug in a sudden contraction geometry D = 260 µm, and d =

100 µm. The liquid-solid contact angle is set to 73o and σ = 0.0725 J m−2 representing
water in a PMMA structure. The plug is static when the correct counter pressure is
applied at the left.

results, treating of static bubbles, produced by the Matlab clogging program
are hence of prime interest as they build upon the theory presented in Sec. 5.2.
The program made by the author and is presented in Appendix D.

Set-up and Geometry
Compared to the sudden contraction the tapered channel geometry contracts
from an initial width Di to the a narrower width di over the length Li. The
contraction has a so-called tapering angle de�ned as

θt = arccos
(

Di − di

2Li

)
, (9.7)

the dimensions and θt are presented in Fig. 9.8.

dd ii
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D D
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A
qt

liquid

solid

gas

Figure 9.8: The geometry of the
tapering channel problem is de�ned
through the lengths Di, di, and Li.
Dynamically varying lengths de�ning
the bubble are D, d, and L. As the
bubble is planar it has an area named
A.

A bubble entering the contraction is furthermore de�ned through the lengths
D, d, and L. Where D is the left meniscus height, d the right meniscus height
(on the �gure d = di), and L is a measure of bubble length. They are obviously
varying as the bubble moves into the tapering. The total gas/bubble area A is
constant as the gas is modelled as incompressible. The conservation of area A
obviously plays a key role in the Matlab clogging program.
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Assume that no external pressures are applied and that no friction is present.
A wetting bubble placed in the purely tapered region may under these assump-
tions move either in or out of the tapering. The direction is de�ned by the sign
of the driving pressure gradient Γ = −∆Pb/(Li − L) (recall Eq. (4.31)) where
∆Pb is de�ned in Eq. (5.14). If Γ > 0 the movement is towards the left while
for Γ < 0 it is towards the right. The speci�c sign depends on the geometry and
nature of the bubble, i.e., A = A(D, d, L).

• Example
As a function of the bubble length the transition from Γ < 0 to Γ > 0
happens at the critical length

Lc = D
cos θt sin θ

cos(θ − θt)
. (9.8)

The length can in turn be translated into an area (volume in 3D). The
tapering angle θt hence determines the e�ciency of a contraction to move
a bubble of a given area/volume. The geometry might hence ease the
movement of bubbles into a contraction.

In the simulations the bubble is initiated as a plug at the left of the channel.
No external pressures are applied. The bubble length L is chosen, L < Lc, such
that the bubble moves into the tapering under its own driving (∝ Γ). As the
bubble is moving the curvature of the front and rear interfaces are thus expected
to di�er from the static solution modelled in the Matlab program.

Results
Three representative cases are in the following studied using one tapering ge-
ometry. The physical parameters used represent an air (a) bubble in water (w)
enclosed in a PMMA structure.

Data: Di = 300 µm, di = 100 µm, Li = 500 µm, θt = arctan(1/5) ≈ 11.5o,
ρw = 1000 kg m−3, ρa = 1.16 kg m−3 σ = 0.0725 J m−2, µw = 10−3 Pa s−1,

µa = 1.85× 10−3 Pa s−1, and θ = 73o.

1: The bubble is initiated 100 µm from the left boundary with L = 100 µm. The
bubble moves into the tapering while the relevant data is collected. A time series
of four snapshots from CFD-VIEW is presented in Fig. 9.9. The initial gas plug
achieves correct curvature after about 50 time steps that is ≈ 5× 10−4s.

The pressure over the bubble ∆PN
b as well as the geometric parameters ob-

tained from the simulation are presented in Fig. 9.10 together with the static
results from the Matlab program. All data is plotted as a function of D. De-
creasing D values hence represent the bubble moving into the tapering and vice
versa.

The geometric parameter are seen to comply well with theory. CFD-ACE(U)
obviously respect the conservation of area as well as the geometric constrains.
However, discrepancies are present in the pressure data because the bubble
is moving instead of being static. The dynamic nature of the system deforms
the curved interfaces.2 The relative change in D and d, as the bubble elongates,

2For simulated data to be compared with theory the system should be quasi stationary.
Several options are available: (1) Introduce a high amount of un-physical viscosity in the
liquid. (2) Add friction at the walls if it were possible. (3) Apply a counter pressure. It is
however only possible to measure one static data point with the third option.
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(a) Initial condition. (b) Still in tapering.

(c) Entering narrow channel. (d) Totaly engulfed.

Figure 9.9: Four snapshots of a contour plot of the F -function taken at four character-
istic positions of the bubble in the tapered channel. Blue areas represent gas (F = 0)
and pink areas liquid F = 1. The actual times since simulation start are shown on the
�gures.
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Figure 9.10: Simulations and static theory data for: (a) The pressure ∆Pb, (b) the
right meniscus diameter d, and (c) the bubble length L. All plotted as a function of
the left meniscus diameter D.
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further generates varying dynamics at the front and rear. This last characteristic
is illustrated in Fig. 9.11. According to the theoretical curves the bubble should
be stationary at the points where ∆Pb = 0, however, this does not happen. The
negative portion of ∆Pb(D) is very small and is maybe overcome by numerical
oscillations in ∆PN

b .
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Figure 9.11: Distance from inlet to the bubble x and the bubble widths D and d
plotted as function of time. The vertical dotted line marks the entering of the right
interface into the narrow channel. The speed dx/dt (in m/s) of the bubble is found by
use of linear �ts.

In relation to Fig. 9.11 the speed of the bubble is determined via the intro-
duction of a new variable x. It measures the distance between the bubble and
the inlet (left side). Observe that the position x(t) of the self propelled bubble
is nearly piecewise linear in time t. The speed dx/dt of the bubble varies from
0.04ms−1 to 0.01 ms−1 as the right interface enters the narrow channel. The
speed will drop to zero when the bubble is completely located in the narrow
channel.

The exact nature of the variations in dx/dt are not clear. The dependency
with respect to tapering angle θt, contact angle θ and initial bubble area A are
interesting topics. Changes in one of these parameters determine the character
of the interplay between D and d and hence on the driving pressure gradient.
Such a thorough investigation is very tedious especially in regard to the data
collection in CFD-VIEW. Further an external driving pressure di�erence be-
tween inlet and outlet might be added.

2: By increasing the initial bubble area (increasing L to 200 µm) the part of the
static pressure curve beneath zero increases, compare Fig. 9.10(a) with Fig. 9.12.
This is made to render probable that the bubble will get stuck: ∆Pb ≤ 0 yields
Γ ≥ 0.

Fig. 9.12 depicts how ∆PN
b actually goes to zero. The bubble gets stuck

as the right interface enters the narrow channel. As mentioned in the previous
discussion the actual bubble area plays an important role regarding the clogging
properties of a tapered channel.
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Figure 9.12: ∆Pb theoretical and simulated data. The pressure over the bubble ∆P N
b

goes to zero where static theory predict the bubble to be stuck.

3: Finally points on the theoretical curve are veri�ed by applying an appropri-
ate counter pressure and letting the bubble move to rest Γ = 0. The theoretical
values predicted by theMatlab program where con�rmed, once more emphasiz-
ing the reliable and robust internal pressure/curvature routine of CFD-ACE(U).

Conclusion
The tapered channel geometry exhibits interesting features both from an aca-
demic point of view, but certainly also from an application point of view. De-
pending on the bubble size and channel geometry a tapered contraction may
actually ease the passage of bubbles from one channel diameter to another. The
curvature contribution to the clogging pressure Eq. (5.18) may be negative.

• Example
A 2D air bubble is used to as an example. The bubble of area ≈ 200 ×
300 µm2 is placed in a water �lled PMMA channel (θ = 73o), contracting
from D = 300µm to d = 100µm. The clogging pressure associated with
the sudden contraction is

P s = Pfriction + 283Pa (9.9)

whereas it for the tapered channel (θt = 11o) is

P t = Pfriction + 90Pa. (9.10)

The pressure due to friction Pfriction is not geometry dependent. The dif-
ference is quite signi�cant and not to be neglected in actual microchannel
designs.

In light of the theoretical results derived in Sec. 5.2 and the simulations of
the contracting channel, it becomes obvious that the tapered geometry is pre-
ferred to the sudden contraction. When designing actual micro systems sudden
contractions and sharp edges should be avoided. This in turn represents a simple
but yet evident design rule.
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Figure 9.13: Geometry of a channel with roughness knobs at the walls. The knobs are
rectangular with dimensions lR and hR and are placed at a distance l. Asymmetry of
the system is de�ned through the o�-set length lO,R

9.4 Roughness
It is in the CFD-ACE+ package not possible to include the friction e�ects expe-
rienced by the contact lines of moving bubbles. The e�ects are, in the theoretical
study of Chap. 5, accounted for through the empiric frictional surface tension
parameter α. The parameter includes both friction e�ects due to chemical pro-
cesses on the solid boundary as well as the friction due to knobs and other
physical distortions of the solid surface.

Set-up and Geometry
An investigation of direct simulation of simple idealized rough surfaces is here
presented. Identical square knobs are added to the walls of a straight channel
of width d as depicted on Fig. 9.13. The knobs are hR high, lR wide, and are
placed at distance l. Asymmetry is introduced through the o�-set length lO,R

also de�ned on the �gure.

Figure 9.14: Actual computational domain and grid with transition and rough areas
shown. The present case has a symmetrical roughness distribution, i.e., lO,R = 0.

The actual geometry is easily implemented and gridded in CFD-GEOM. To
keep calculation time at a minimum the knobs are only resolved with a 4 × 4
grid. Even though the grid is relatively coarse the number of cells is however a
factor 4 to 5 larger compared to the simple straight channel previously discussed.
There are approximately 40× 100 cells. Special care is further taken because of
the transient nature of the simulation. A non-rough transition area where the
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bubble is initiated is placed before the �Rough Area�. The bubble thus has time
to take up a natural shape. On Fig. 9.14 the computational domain and grid
are depicted for lO,R = 0. The transition area is quite large so that relatively
large bubbles may be initiated.

Theory
When the contact angle description is used in the simulations it is easy to make
simple analytical considerations about the involved pressures. They are only
based on the Young-Laplace equation, the contact angle θ and the geometric
constrains of the system.

hR

q

r

liquid-gas
interface

h
R

d
-

2 Figure 9.15: Distorted sketch of a liquid
gas interface at the verge of crossing a
knob of height hR. The radius of curvature
of the interface is r = d/(2 cos(π/2− θ)).

An important information regarding the geometry depicted in Fig. 9.13 is
the maximal possible pressure drop needed to sustain a bubble. The situation
arises for lO,R = 0 if one end of the bubble is located at a wide part of the
channel and the other is just about to cross a knob as shown in Fig. 9.15. The
interface will deform continuously around the knob corner until it attains the
prede�ned contact angle θ. The maximal pressure to sustain a bubble is readily
found as3

∆Pb,max = 2σ

(
cos θ

d
− cos(π

2 − θ)
d− 2hR

)
. (9.11)

Suppose a bubble is present in the idealized system depicted in Fig. 9.13
and it has a �nite contact angle θ. The pressure de�ned by Eq. (9.11) then
corresponds to the maximal �friction� pressure. The value of the frictional surface
tension parameter α is hence known in advance, as de�ned by Eq. (5.15), and
is given by

α =
d∆Pb,max

4
. (9.12)

Simulation Results
The roughness and channel have dimensions d = 300µm, l = 60 µm, and lR =
hR = 30 µm. In the symmetric case lO,R = 0 the predicted maximal �intrusion�

3This pressure also represents the pressure needed to push a bubble out of a sudden con-
traction. That is from the shallow to the wide channel.
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pressure de�ned by Eq. (9.11) is con�rmed by varying θ and the externally
driving pressure gradient.

Figure 9.16: A wetting bubble nearly to-
taly within the rough area. Dimensions:
d = 300 µm, l = 60 µm, lR = hR = 30 µm,
lO,R = 0 µm.

Only a few simulations where carried out. The variation of geometrical pa-
rameters is very tedious and basically does only con�rm theoretical results. The
ratios l/lR and d/hR as well as o�set are important. They determine the mini-
mal pressure needed to initiate �ow in a rough capillary. Furthermore the ratio
l/lR determines if a bubble will jump over a crevasse and leave a pool of liquid
as depicted on Fig. 9.16 or wet the channel wall completely.

The presence of roughness increases the travel time of a bubble and hence
decrease its mean velocity. The deformation of the bubble due to the roughness
requires energy. The externally imposed driving pressure gradient is diminished
considerably as it has to sustain the bubble. A further investigation might in-
clude more realistic non-regular roughness. It should in CFD-ACE+ be possi-
ble to include the empirical roughness parameter α. The direct simulation of
roughness is not a realistic option especially regarding the grid generation and
increased simulation time.

9.5 Passive Bubble Trap
Suppose a certain micro�uidic device has an unavoidable tendency to create
bubbles at a certain location. If the device moreover cannot include active bulky
removal systems a solution may lie in passive so-called bubble traps. The novel
idea of a bubble trap was discussed with supervisor G. Goranovi¢ during the
thesis work. The basic design is based on two principles: (1) Trapping the bub-
ble using the curvature e�ects described by the Young-Laplace equation. (2)
Optimizing the geometry to allow for unhindered �ow after trapping.

After di�erent initial designs and tests a �nal version with two key features
is developed by the author. The idea is that the trap diverts the bubble in the
so-called o�set region towards the trap region. The sketch of the �nal bubble
trap is presented in Fig. 9.17.

The central task of the o�set region is to make a wetting bubble detach from
the upper channel wall before reaching the trapping region. When the bubble
has detached the �ow will drive the bubble towards the two contractions (lt < d)
where it will get trapped. Depending on the size of the bubbles present in a sys-
tem the o�set length lo should be varied. For the trap to work the bubble length
should be about two or three times lo. Note that the o�set feature of the present
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Figure 9.17: Geometry of the bub-
ble trap. The o�set region and speci�c
length lo as well as the trap region and
length lt are are shown.

trap builds upon the assumption of a wetting bubbles. As the bubble enters the
trap region the curvature e�ects created by the two narrow parts (lt < d) clogs
the bubble according to the principles discussed in Chap. 5.

The bubble trap functions are in the following investigated computationally.
The geometry depicted in Fig. 9.17 is used with d = 150 µm, lo = 50 µm, and
lt = 50 µm. The initial condition and full geometry within bounds is presented
in Fig. 9.18 followed by four snapshots at selected times in Fig. 9.19 (a) to (d).

Figure 9.18: Initial condition and bounds of the bubble trap. The area illustrated by
the following four snapshots is marked with a black box, Fig. 9.19.

The simulated bubble trap is only adequate for small bubbles. If larger bub-
bles are used they clog the system. In an actual micro�uidic device several bubble
traps with varying o�set length should be placed in series to obtain maximal
trapping e�ciency. The simulation illustrates how the basic design features are
e�cient and work according to intend. However, the design is not perfect and is
only here tested in 2D. The �ow is still distorted by the bubble and especially
is forced through sharp turns which is generally to be avoided in micro�uidic
devices. The basic concepts presented are interesting and should be included in
future 3D models and further developments.

At last it should be noted that the trap is ine�ective if non-wetting bubble
conditions are used. The bubble ends up siting as shown in Fig. 9.20. Liquid is
passing on both sides of the bubble and holds it in a stable locked position. This
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(a) Moving bubble. (b) O�set e�ects.

(c) Getting trapped. (d) Trapped bubble.

Figure 9.19: Four selected snapshots of a bubble getting trapped. Notice that the �ow
is free to pass the trapped bubble.

Figure 9.20: A non-wetting bubble,
θ = 0o, stuck in a stable position and
not entering the trap region as de-
sired.

all leads back to the question about proper de�nition of boundary conditions.

Outlook and Ideas
In addition to the passive bubble trap presented above several other ideas con-
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cerning the removal of bubbles where also discussed. Some of the ideas and areas
needed to be investigated are shortly summarized:

• Use of di�erent hydrophobic/hydrophilic regions in the channel structures
was discussed with N. J. Petersen [52]. This principle is readily used in so
called hydrophobic valves Man et al. [51].

• Use of special porous materials to extract gas bubbles from the liquid
(e.g., goretex). Say, a bubble is localized in the �bug leg�-like structure
depicted in Fig. 9.21. By coating the channel walls wit a porous material
it might be possible to extract/suck the bubble out of the �ow. The ideas
was discussed with supervisor G. Goranovi¢.

flow

coated trap
region

bubble

solid

liquid

“bug legs” Figure 9.21: Trapping an localizing a
bubble in a so called �bug leg� struc-
ture. Walls might be coated with, e.g.,
goretex having the property of remov-
ing the gas from the liquid.

• Study the speci�c surface energy induced properties of, e.g., porous ma-
terials.

• Investigate how to avoid that the �ow in the bubble trap distorts eventual
chemical plugs.
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Chapter 10

3D Simulations

The free surface capabilities of CFD-ACE+ are at last applied to two 3D cases.
Calculation time is expected to increases drastically due to the increase in num-
ber of grid cells and because the surface reconstruction is slower in 3D.

10.1 Static Interface Shapes
The pressure drop over a static liquid-gas interface in a capillary tube of constant
rectangular cross section is in Appendix E determined analytically. The pressure
drop ∆Pi is in Sec. 5.3 de�ned as

∆Pi = Cm
σ

R
(10.1)

where Cm is the dimensionless curvature parameter, σ is the surface tension,
and R is the radius of the largest inscribed circle of the cross section.

The full 3D static interface is in the following determined and the results
are compared to theory. The time dependent simulations are initiated with an
arbitrary �at interface. The resulting computation actually corresponds to solv-
ing the static problem with an iterative method. The time is then a measure
comparable to a number of iterations. The interface will deform from an initial
�guess� towards the static solution.

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

θ

C
m

Dimensionless curvature for N=2. Critical contact angle:44.9 deg.

1.275 Figure 10.1: Dimensionless cur-
vature as function of contact an-
gle θ for an aspect ratio of 2. The
critical curvature is marked with
a vertical dotted line. The �gure is
produced by theMatlab program
presented in Appendix E.
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A rectangular capillary tube of height a = 100 µm and width b = 200 µm
is investigated (hence an aspect ratio of 2). From the results obtained in Ap-
pendix E the critical contact angle is known to be θc = 44.9o. The dimensionless
curvature Cm is in Fig. 10.1 plotted as function of static contact angle θ.

(a) (b)

Figure 10.2: Static liquid-gas interface in a capillary tube of rectangular cross section.
The contact angle is θ = 30o. Figure (a) depicts a contour plot of F in a cross section
away from the curved interface. (b) contour surface of F illustrating the actual interface
shape.

The meniscus of a liquid having a contact angle θ = 30o < θc and surface
tension σ = 0.0725 is presented in Fig. 10.2. The corner wetting liquid areas
described in Sec. 5.3 are depicted in Fig. 10.2(a) where a contour plot of F
is presented in a cross section plane lying away from the interface front. In
Fig. 10.2(b) the interface is presented as a contour surface of F for F = 0.5.

The theoretical pressure drop is ∆Pi = 1860Pa with Cm = 1.28 and R =
50µm. The simulations yields ∆PN

i ≈ 1930 Pa corresponding to a relative error
of only 3.5%.

Figure 10.3: Static liquid-gas in-
terface and computational grid for
θ = 50o > θc.

When a contact angle θ is chosen greater than the critical value θc the sim-
ulation correctly predicts that no wetting liquids form in the corner regions of
the tube. Fig. 10.3 depicts the interface shape for θ = 50o. The computational
grid of 14 × 28 × 28 cells is shown. The theoretically predicted pressure drop
is ∆Pi = 1398 Pa and simulation yielded ∆PN

i ≈ 1420Pa corresponding to a
relative error of only 1.5%.

The theory and simulations are seen to agree. For the case of static interfaces
analytical methods are seen to be powerful tools. The simulations also con�rm
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that the internal pressure/curvature routines of CFD-ACE(U) are e�cient, also
in the 3D case.

10.2 Circular Tube
The case of a non-wetting bubble moving in a cylindrical tube of radius a =
75 µm is investigated as a �nal 3D example. The pressure drop over the bubble
∆PN

b as well as the thickness of the wetting �lm layer hN
0 are compared to the

theoretical results from Sec. 5.4 (Eqs. (5.22), (5.23), (5.24), and (5.25)).
The simulation is only carried out for one set of parameters as the compu-

tational time is extremely high. The run took about 5 days whereas simulation
of the the static interface only took about 4h. Even after 5 days the bubble had
only moved about one third of the over all tube length L = 1500 µm. The grid
is constructed with very cubical cells and contains 46800 cells.

Theory Simulations
Ca× 10−4u× 10−2 v × 10−2 w × 10−3 ∆Pb h0 wN ∆PN

b hN
0

1.25 0.9 1.2 3.23 22.7 25.1 - 31 < 15

Table 10.1: Results from the numerical simulation. All velocities are measured in m/s,
the wetting �lm thickness in m, and the pressures are in Pa.

Figure 10.4: A contour surface of the F function for F = 0.5 illustrating the 3D
bubble in a cylindrical tube. Two cross section cuts are placed in front and behind the
bubble illustrating the grid.

The theoretical and simulated data are presented in Table 10.1. The bubble
and grid are illustrated in Fig. 10.4. The data from the simulation does not com-
ply with theory. The bubble moves slower than the mean �ow velocity moreover
the predicted wetting layer is much larger than the maximal simulated. The
discrepancies may be due to numerical errors or simply the fact that the static
solution has not yet been reached: the bubble is still transient.
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Chapter 11

Conclusion

To investigate the behavior of bubbles in microchannels a combined approach
of both a theoretical study and numerical simulations is adopted. The proce-
dure results in a thesis with a complete and thorough investigation of several
phenomena.

The �rst part of the thesis thoroughly presents and discusses the important
surface tension and contact angle related phenomena, in case of both static
and moving bubbles. The static contact angle description is applied and used to
characterize the behavior of static bubbles in two speci�c contracting geometries:
the sudden contract and tapered channels. A Matlab program is developed
speci�cally to analyze clogging e�ects of bubbles in tapered channel geometries.

The theoretical study did, moreover, pinpoint some open questions that need
to be addressed in the future. Especially the precise behavior of moving contact
lines need to be clari�ed.

The second part of the thesis is dedicated to a numerical investigation of sev-
eral bubble phenomena. For this purpose the commercial CFD-ACE+ software
package is utilized. A great amount of knowledge about the program is gained,
principally about the volume-of-�uid (VOF) free surface handling method.

The CFD-ACE(U) solver has good assets when handling, both 2D and 3D,
static interfaces. After a transient phase numerical results agree with theory.
The internal pressure/curvature calculation routines are robust. It is thus a pity
that the internally reconstructed piecewise linear surfaces may not be exported
to CFD-VIEW and visualized.

The dynamical behavior of moving 2D bubbles in a simple straight channel
is analyzed in the view of previously discussed 3D theory. The pressure drop
over the bubbles ∆Pb as well as the wetting layer thickness h0 exhibit correct
behavior. The indirect high wall resolution embedded in the VOF model is seen
to work even though the �ow pro�le is very simpli�ed. The behavior of bubbles
in the tapered channel geometry is compared to the theoretical predictions of
the Matlab program. As the bubbles move the interfaces deform the results
thus di�er. The driving pressure gradient concept developed is seen to be very
useful. The static clogging program pinpoints critical positions where bubbles
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get stuck. The simulations deliver the pressure e�ects due to curvature described
by the Young-Laplace equation. Geometries may hence be optimized in that re-
gard. Friction at the contact line is a material speci�c parameter. Comparing
the tapered channel geometry to the sudden contraction geometry reveals that
it decreases the pressure needed to move a bubble through a speci�c contrac-
tion. Depending on the bubble size and geometry the clogging pressure due to
curvature may be from halved to totally removed.

During the numerical investigation the limitations of the VOF module are
pinpointed. The speci�cation of proper boundary conditions at solid walls is
very limited and yield problems: (1) Erroneous numerical wall adhesion e�ects
appear, (2) it is not possible to include friction e�ects, and (3) transition from
contact angle to wetting regimes is not accounted for. The sharp identi�cation
of numerical errors illustrates how physical understanding is signi�cant for good
CFD practice.

As a result of combined CFD and theory a novel passive bubble trap geom-
etry is developed and simulated. The geometrical properties are optimized so
that bubbles get trapped while letting the �ow continue unhindered.

Mads Jakob Jensen, c960853
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Appendix A

Curvature in R2 and R3

A.1 Curvature in General
Curvature is regarded on a regular (or simple) surface S. That is a one-to-one
Ck function x : U → En where U is an open subset of R2 with co-ordinates u1

and u2, at each point of D x1 × x2 6= 0. When di�erentiating with respect to
ui, the notation xi is used, etc. If the surface is regular this also means that x1

and x2 are linearly independent and that the normal at a point on x is given as
n = x1×x2. From the theory of di�erential geometry (Millman and Parker [5])
two fundamental forms and the important Weingarten map matrix are given as:

• The �rst fundamental form,

G = [gij ] = 〈xi,xj〉 (A.1)

also yielding the useful relation g = detG = |x1 × x2|2.
• The second fundamental form,

[Lij ](n) = 〈n,xij〉 (A.2)

where the unit normal vector, n̂ = 1√
gn, often is used.

• The Weingarten map matrix

L = G−1[Lij ] (A.3)

If the unit normal is used in deriving [Lij ] then at a given point on x the
eigenvalues of L are the two principal normal curvatures (κ1 = 1

R1
and κ2 = 1

R2 ).
The corresponding eigenvectors are the two principal directions with respect to
the x1,x2-coordinate system, that is in the tangent plane at the given point.

Furthermore the following curvatures are de�ned as

K = κ1κ2 = det(L) (A.4)

H =
1
2
(κ1 + κ2) =

1
2
trace(L) (A.5)
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where K is the Gausian curvature and H is the mean curvature. The mean
curvature is the one being of special interest for us, as it appears in the Young-
Laplace equation.

Note that if H is equal to zero at all points on the surface S, S is called a
minimal surface. Eq. (A.3) then yields,

H =
1
2
(κ1 + κ2) =

1
2
trace(L) = 0 ⇔
trace(L) = 0 ⇔

g11L22 − 2g12L12 + g22L11 = 0 (A.6)

where we have used the complement method to �nd the inverse of G. Eq. (A.6)
is fundamental in the theory of minimal surfaces.

A.2 Interpretation of curvature in R2

A easy way to determine and understand curvature on a plane curve is to ap-
proximate it with a circular motion at every point. Thus using the well known
formulae from mechanics a = v2/R from circular motion. The curve is described
by a vector function (parametric representation) r(t) = (x(t), y(t)) with velocity
v(t) = (x′(t), y′(t)) and acceleration a(t) = (x′′(t), y′′(t)) (a graph, y = y(x), is
parametrized by r(x) = (x, y(x)), etc.).

The acceleration predicts the change in velocity both directional and in size.
It is hence logic to divide into two components, a normal and a tangential, i.e.,

a = a⊥ + a‖ (A.7)

As the velocity is always tangential to the curve we get by simple projection
(on v and v̂),

a⊥ =
a · v̂
v̂2

v̂ and a‖ =
a · v
v2

v. (A.8)

The radii of curvature is hence

R =
|v|2
|a⊥| =

|v|3
|a · v̂| , (A.9)

and for a graph y = y(x) it yields (as mentioned in Probstein [2] and Adamson
[3])

R =
(1 + y′(x)2)

3
2

y′′(x)
. (A.10)

The same result is now obtained by a more strict di�erential approach,
sketched in Fig. (A.1). The intersection of two normal lines �approaching� one
another (∆t → 0) is the center of curvature.

For any point x on the normal line, l, at time t we have the relation,

l : v(t) · (x− r(t)) = 0 (A.11)
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Figure A.1: Di�erential approach to curvature in R2.

In the same manner a point on the line l∆ at time t + ∆t, with parameter
s, is given by,

l∆ : x = r(t + ∆t) + sv̂(t + ∆t) = (r(t) + ∆tv(t) + ...) + s(v̂(t) + ∆tâ(t) + ...)
(A.12)

where a Taylor expansion around t has been made to �rst order. The inter-
section of l and l∆ is found by inserting Eq. (A.12) into Eq. (A.11) yielding

v(t) · ((r(t) + ∆tv(t) + ...) + s(v̂(t) + ∆tâ(t) + ...)− r(t)) = 0 ⇒

s = − v2

â · v =
v2

a · v̂ , for ∆t → 0 (A.13)

The center of curvature is found, by inserting Eq. (A.13) into Eq. (A.12)
with ∆t → 0, as

OC = r +
v2

a · v̂ v̂ (A.14)

and hereby getting
R =

v2

|a · v̂| |v̂| =
|v|3
|a · v̂| . (A.15)

A.3 Curvature of a Surface of Revolution
In many problems involving a liquid-gas interface the interface can because of
symmetry be described as a surface of revolution. In that case the surface is
described in one plane by a graph, say of a function y(x), see Fig. (A.2). The
two main radii of curvature are (see the �rst section) �rstly R1 the curvature of
y(x) in the xy-plane given by Eq. (A.10). Secondly R2 the curvature in a plane
perpendicular to the xy-plane intersecting as the normal to the curve y(x). R2

is hence given by extending the normal to the pro�le until it hits the axis of
revolution as shown in Fig. (A.2).

Having Fig. (A.2) in mind simple geometry yields the relations

sin θ = x
R2

tan θ = sin θ
cos θ = y′

cos θ = 1
(1+y′2)1/2
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Figure A.2: Curvature of a surface of revolution.

inserting these expressions in one another easily yield

1
R2

=
y′

x(1 + y′2)1/2
(A.16)

The two curvatures could equally have been found using the theory from the
�rst section setting

x(s, t) = (s cos t, y(s cos t), s sin t), t ∈ [0, 2π], s ∈ [0, xmax]. (A.17)
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Appendix B

Poiseuille and Couette Flow

The Couette and Poiseuille pressure driven steady state incompressible �ows are
here shortly presented. The �ows are described by the incompressible form of
the Navier-Stokes equation and the continuity equations, Eqs. (2.9a) and (2.9b).

B.1 Couette Flow
The planar pressure driven �ow, Fig. B.1, between two stationary plates is found
by solving Eq. (2.9b) in 2D (u = (u, v)).

y

d

0 x

Figure B.1: Characteristic parabolic velocity pro�le
of the planer pressure driven Couette �ow.

v = 0 yields ∂P/∂y = 0 so that P = P (x) and Eq. (2.9b) reduces to,

dP (x)
dx

= µ
d2u(y)

dy2
. (B.1)

Left and right side depend on x and y, respectively so they are equal a common
value, say −Γ. Using no-slip conditions at y = 0 and y = d readily yields,

P (x) = P0 − Γx (B.2)

u(y) =
Γ
2µ

y(d− y) (B.3)

U =
1
d

∫ d

0

u(y)dy =
Γd2

12µ
(B.4)

Re =
ρUd

µ
=

ρΓd3

12µ2
. (B.5)
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Where P0 is a constant, −Γ is the pressure gradient, U the mean �ow rate, and
Re the Reynolds number of the system.

B.2 Poiseuille Flow
The pressure driven �ow in an in�nitely long cylindrical tube of radius a is
rotationally symmetric along its axis. In cylindrical coordinates the velocity
�eld is: u = (ur, vθ, wz). By simple geometric considerations the velocity �eld
in the tube must be on the form,

u = u(r)ez = (0, 0, u(r)). (B.6)

It is supposed that there are no periodic solutions in θ. Using the cylindrical
form of the ∇ operator in Eq. (2.9b) and the velocity �eld given above the
solution is readily found as,

u(r) =
Γ
4µ

(a2 − r2), Γ = −dP

dz
= −∆P

L
(B.7)

umax = u(0) =
Γa2

4µ
(B.8)

U =
1
A

∫

A

u(r)dA

=
1

a2π

∫ 2π

0

∫ a

0

u(r)rdrdθ =
Γa2

8µ
(B.9)

Re =
ρ2aU

µ
=

ρΓa3

4µ2
. (B.10)
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Appendix C

Exact Solution of Capillary
Rise

The exact equation for a meniscus in a cylindrical capillary tube, Eq. (5.7) is
here solved numerically with Matlab using a simple shoot method combined
with the Newton-Rapton formula.

C.1 Method
The given parameters in the problem are radius a, surface tension σ, contact
angle θ, and density ρ. The goal is to determine H being the distance from still
water to the meniscus apex as seen on Fig. C.1.

H

y

x

z x( )

x

a

g

Figure C.1: Dimensions and de�-
nitions of the capillary rise prob-
lem. The distance from still wa-
ter is y(x). The relation y(x) =

H + z(x) is used in solving the
problem.

To simplify the numerical procedure the z(x) variable de�ned by z(x) =
y(x)−H is introduced in Eq. (5.7) yielding

ρg(z + H) = σ

(
z′′

(1 + z′2)3/2
+

z′

x(1 + z′2)1/2

)
. (C.1)

The idea behind the transformation is to make H the tuning parameter in
the shooting procedure. Eq. (C.1) is a second order ODE with the boundary
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condition,
z = 0 for x = 0 (C.2)

dz

dx
= tan(π/2− θ) for x = a. (C.3)

To solve the problem a set of correct initial conditions is introduced and H
is used to tune in on the boundary condition at x = a. The initial conditions
are

z = 0 for x = 0 (C.4)
dz

dx
= 0 for x = 0. (C.5)

The initial condition problem is solved with the Matlab ode15s.m function. H
is varied to make the boundary conditions �t, i.e., �nding the zero of the error
function,

ε(h) = tan(π/2− θ)− dz

dx
|x=a. (C.6)

The zero point is easily found by using a Newton-Rapton iteration formula.
The procedure converges satisfactory within 4 or 5 iterations. Note that the
initial guess on H is given by the simple solution Eq. (5.2). The source code is
located in the �Source Code� section.

C.2 Example
As an example imagine water rising in a PMMA cylindrical tube, with pa-
rameters: ρ = 1000kg/m3, σ = 0.072N/m, g = 9.82m/s2, θ = 73o, and
a = 100µm = 0.1mm. The problem yields a water column height of H ≈ 4.3cm.
The meniscus pro�le is presented in Fig. C.2, and the following data is presented:
Number of iterations: 4
Absolute error in dz/dx(a): 4.7155e-009
Capillary length D_c: 2.7078 mm
Meniscus height h: 0.015294 mm
Water column height H is: 4.2856 cm
Absolute deviation in H from simple theory: 0.017125 mm

−1 0 1

x 10
−4

0

10

20

x 10
−6

x/m

z(
x)

/m

Meniscus Profile

Figure C.2: The meniscus pro�le at equilibrium.

The exact solution does only deviate slightly from the approximative simple
solution. This is obvious as the meniscus height h is much smaller than the
capillary length, h ¿ ∆c. Surface tension phenomenon are hence much more
important than gravitation.
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C.3 Source Code
Main Program (caprise.m):

Function 1 (rhs.m):
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Appendix D

Clogging Program

To enable comparison of the tapered channel model (a slightly extended model
of the one described in Sec. 5.2) with simulations a Matlab program was im-
plemented. Volume or area conservation of an initial bubble is utilized to �nd
relevant bubble geometry and hereby determine relevant physical data (pressure,
curvature, dimensions, area, etc.).

d ii

1 2

i

D

LL

L

L

axis of

rotation

V V V

V

1 2 3

4

(a) Geometry of the extended tapered
channel geometry with appropriate label-
ing.
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d
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hm

q+q

rR

q-q

MH
D

q
q

t

t

t

(b) The bubble in a tapered channel Fig. 5.5 from Sec. 5.2.

Figure D.1: Full geometry of the tapered channel and labels used in the clogging
program.
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D.1 Method and Discussion
The basic idea behind the program is to �nd the geometric relation between the
left diameter D, the right diameter d, and the length L (see Fig. D.1), having
a known initial bubble volume Vb or area Ab. The 3D axisymmetric case using
volume conservation is in the following discussed. The method for the 2D case
is conceptually identical.

As depicted on Fig. D.1(a) the bubble is divided into the four volume slices
V1 to V4 (V3 might be zero if d > di). Hence for any given D, d or L value the
program solves the equation,

V1 + V2 + V3 + V4 = Vb ⇔ (D.1)
1
3
πH2(3R−H) +

1
3
πL1((d/2)2 + dD/4 + (D/2)2)

+(L− L1)π(di/2)2 +
1
3
πh2(3r − h) = Vb (D.2)

with respect to D, d or L depending on the situation. Where L = L1 + L2 and

d = D − 2 tan θtL (D.3)
d = di if d < di (D.4)
L1 = L if d > di (D.5)

L1 =
D − di

2 tan θt
if d < di. (D.6)

The volumes are easily found as the geometry is axis-symmetric. The program
uses theMatlab fsolve.m standard function to solve the equations. The source
code is located at the end of this Appendix. After determining the geometric
factors the relevant curvatures 1/R and 1/r, the pressure drop due to surface
tension Eq. (5.14) and the overall surface area of the bubble are calculated. All
data is further plotted as a function of D.

To illustrate the program the following data is chosen. Di = 300 µm, di =
100 µm, tan θt = 1/5, θc = 73o, σ = 0.0725 N/m and an initial bubble volume
equal to that of a sphere with radius Rb = 95 µm. The data is presented in
Fig. D.2.

Though this section is a �program Appendix� it is worth noticing how the
curvatures and hence the pressures seem discontinuous at the point where the
right side of the bubble enters the non-tapered section (when d = di = 100µm.
This is because the tapering angle is discontinuous at this point.

The passage is actually not discontinuous. A method to handle the pas-
sage has been implemented by introducing a decreasing radius of curvature
at that edge point (see Fig. D.3). The right curvature, r, decreases from r =
d/(2 cos(θc + θt)) to r = di/(2 cos θc) continuously while volume conservation is
obviously still required. The actual implementation of the method increases the
complexity of the program as it requires a shift in variable parameters from d
to L and �nally to D.

On Fig. D.4 a zoom is made of Fig. D.2(b) just at the transition area, notice
how the length L decreases a little while the bubble enters the non-tapered

114 Bubbles in Microchannels



Chap. D Clogging Program Sec. D.1 Method and Discussion

region. The overall relative change in bubble volume is calculated and found to
be about the order of magnitude of the machine precision.
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Figure D.2: An example of the di�erent results delivered by the clogging program.
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Figure D.3: Continuous deformation of
the meniscus about the edge points
(transition area).
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Figure D.4: Zoom on transition area
for L as function of D.
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D.2 Source Code
The main program is roughly similar for 2D and 3D bubbles. The essential
di�erence lies in the four subroutines volume in 3D and area in 2D. Only the
3D version of the main program is included.

Main Program 3D (clogging02.m):

Volume function 1 (volume0a.m):

Volume function 2 (volume0b.m):

Volume function 3 (volume0c.m):

Volume function 4 (volume0d.m):

Area function 1 (area0a.m):

Area function 2 (area0b.m):

Area function 3 (area0c.m):

Area function 4 (area0d.m):
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Appendix E

Interface in Tubes of
Constant Cross Section

The shape of a static liquid-gas interface in a capillary tube is a function of
the tube geometry. The problem of �nding the interface curvature/shape can in
some cases be simpli�ed. For the case of tubes with constant or slowly varying
cross sections the problem condenses to a 2D description. The method is based
on an energy and work consideration.

s
s

ll
g

g

dz

x

y
z

xyz

A Aa

b

Figure E.1: Two cross sections of a rectangular tube with a gas-liquid interface. Solid
(s), liquid (l), and gas (g) regions are marked.

A capillary of rectangular cross section is depicted in Fig. E.1. Firstly, if
the contact angle θ is less than som critical value θc only portions of the gas
perimeter, L, are in contact with the solid walls and

L = Lgl + Lgs, (E.1)

where s, l, and g stand for solid, liquid and gas, respectively. At equilibrium
the pressure across the interface ∆Pi is constant. The pressure volume work
associated with an in�nitesimal displacement dz of the interface is equal to the
net change in surface energies. The work is given by

∆PidV = σgldSgl + σgsdSgs + σsldSsl, (E.2)

where σ is the interface tension (surface free energy), dS are the changes in
respective surface areas and dV the change in gas volume. The interface shape

118



Chap. E Interface in Tubes of Constant Cross Section

above plane A-A does not change with the displacement dz, hence

dV = Adz, (E.3)
dSgl = Lgldz, (E.4)
dSgs = −dSls = Lgsdz, (E.5)

where A represents the gas cross section area at A-A in the xy-plane. Using the
Young equation Eq. (4.5) (where σ ≡ σgl) together with Eqs. (E.3), (E.4), and
(E.5) yields,

∆Pi = σ

(
Lgl + Lgs cos θ

A

)

min
= σ

(
L′

A

)

min
, (E.6)

where θ is the static contact angle. As the meniscus is in equilibrium the right
hand side of Eq. (E.6) is at its minimum. So, in order to �nd the correct ∆Pi

a general expression for the term in brackets L′/A in Eq. (E.6) is to be found
and minimized with respect to an introduced parameter. Eq. (E.6) is valid for
any cross section shape and can in most simple geometries be determined ana-
lytically.

Finally when the contact angle is greater than the critical value θc the gas
bubble totally wets the solid and Lgl = 0. In this case the interface is generally
found to be part of an ellipsoid or a sphere. The shape and hence ∆Pi is now
found according the contact angle description. The following example is meant
to illustrate the di�erence.

The transition or critical contact angle is found when the pressure drop ∆Pi

de�ned by the two methods is identical. At this point both methods predict the
same minimum energy con�guration.

Example
The case of a rectangular capillary, also depicted on Fig. E.2, is illustrated in
the following example.

a

b

R
w

r

q

Figure E.2: Cross section of a rectangular capillary with relevant parameters.
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1: For θ < θc and by use of simple geometry and the introduction of the
parameter r, on Fig. E.2, a general expression for L′/A is found to be

L′

A
=

2
R

(π − 4θ)r̃ +
[
(2 + 2N)− 4

√
2r̃ sin(ω/2)

]
cos θ

4N − 4r̃2 sin2(ω/2) + 2r̃2(ω − sin ω)
(E.7)

with
ω =

π

2
− 2θ, a = 2R, b = Na, r̃ =

r

R
, (E.8)

where a and b are the rectangle dimensions, θ the contact angle, N the aspect
ratio, R the radius of the largest inscribed circle, and r̃ is the dimensionless
radius of curvature. The minimum of Eq. (E.7) is found by a Matlab program
made by the author.

2: For θ > θc the gas totally wets the solid walls and the pressure drop is
approximated by

∆Pi = σ

(
1

R1
+

1
R2

)
(E.9)

where
R1 =

a

2 cos θ
and R2 =

b

2 cos θ
. (E.10)

The two radii of curvatures are found according to the principles discussed in
Sec. 5.2.

The two described pressure drops are labelled with the subscript 1 and 2
respectively. The critical contact angle θc is found when one of the following
conditions is ful�lled,

Lsg + Llg > Ltotal = 2a + 2b (E.11)
L′

A
has no more minimum (E.12)

∆Pi,1 = ∆Pi,2. (E.13)

The �rst condition is geometrical whereas the last two conditions specify that
the utilized theory should render an energy minimum.

The dimensionless curvature Cm = 2RH = R∆Pi/σ discussed in Sec.5.3 is
found and plotted as a function of the contact angle θ, see Fig. E.3. The critical
contact angle θc is also found and presented in the plot title. The dotted curves
represent the prediction of the false theory in the speci�c region delimited by
θ = θc. The results are found to agree with numerical solution of the full 3D
Young-Laplace equation made by Wong et al. [36].
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Figure E.3: Dimensionless curvature Cm plotted as function of contact angle. Four
aspect ratios are presented N = 1, N = 2, N = 3, and N = 6. The predictions of
the erroneous models are plotted as dotted curves the transition θc is marked with a
vertical dashed line.
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Appendix F

Temperature Dependence of
Surface Tension

The temperature dependence of the surface tension is in the following illustrated
by a thought experiment depicted in Fig. F.1. The system consists of liquid �lling
a box having a sliding cover. The solid-liquid interfacial tension is zero and the
liquid-gas tension is σ. The temperature of the system is constant as well as the
liquid volume.

dA

liquid

Figure F.1: Set-up consisting of box with a moving lid �lled with a liquid.

The cover is moved to uncover an area dA of liquid. The process is reversible
and the work required is dW = σdA. The following relations follow from ther-
modynamics:

dU = dQ + dW �rst law of thermo., (F.1)
dF = dU − SdT − TdS follows def. of F, (F.2)

dQ = TdS = TSsdA reversible process. (F.3)
where the superscript s designates a surface quantity (per area), so that dS =
SsdA.

Using Eq. (F.1) to Eq. (F.3) at constant temperature, dT = 0, yields

dF = dW = σdA ⇒ σ = F s =
(

dF

dA

)

T,V

, (F.4)
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The expression is exactly the de�nition for surface tension given in Chap. 3.
Now, �nding the dependence on temperature

(
dF

dT

)

V

= −S ⇒ dσ

dT
=

(
dF s

dT

)

V

= −
(

dS

dA

)

V

= −Ss < 0. (F.5)

As the process is reversible dQ = TdS = TSsdA hinting that as dS decreases
dA must decrease, i.e., dS/dA > 0.
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Appendix G

Flow Around a Bubble with
Marangoni e�ects

In this appendix the e�ects of gradients in surface tension along a bubble are
illustrated. The situation is highly simpli�ed, but still describes some of the
physical aspects involved. Consider a bubble moving to the left, in a capillary
tube, with speed −U0 with U0 > 0, driven by a pressure gradient Γ = dP

dx > 0.
The problem is rotational symmetric and the bubble is in a static frame of
reference and the walls seem to move at a speed U0, see Fig. G.1. The �ow is
only considered in the wetting �lm far from the bubble ends.
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Figure G.1: The gas bubble mov-
ing to the left with speed |U0| is
in a static reference frame. Cor-
responding to the walls of the
tube are moving to the right with
speed U0. The �ow in the wetting
�lm of thickness h0 is considered.
The presence of surfactants create
gradients in the surface tension,
σhigh > σlow yielding a shear stress
at the interface.

Now, imagine that surfactants are present on the liguid-gas interface. The
�ow will increase the concentration on the interface lying at the back of the
bubble (to the right)1. This situation will create a gradient in the surface tension
along the liquid-gas interface, i.e., a tangential stress

τ0 = −fs =
dσ

dx
< 0, fs > 0 for y = h0, (G.1)

1In a more detailed model the transport of the surfactants on the interface should be
included.
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where fs is the magnitude of the e�ective tangential force per unit area and h0

the �lm thickness. The problem at hand is steady state and uniform in the x
direction. Gravity is neglected. The velocity �eld is hence given as u = (u(y), 0).
The momentum equation then reduces to

∂2u

∂y2
=

Γ
µl

, (G.2)

where Γ is a driving pressure gradient and µl is the dynamic viscosity of the
liquid. The respective boundary conditions are,

u = U0, for y = 0, (G.3)

(µl − µg)
∂u

∂y
= τ0 = −f0, for y = h0, (G.4)

µg is the dynamic viscosity of the gas. The second condition follows from New-
ton's formula (see Chap. 2). In the the absence of surface tension, τ0 = 0,
Eq. (G.4) represents continuity in the stress tensor. Having µg ¿ µl Eqs. (G.2),
(G.3), and (G.4) are easily solved yielding

u(y) =
1
2

Γ
µl

y2 − 1
µl

(fs + h0Γ)y + U0 (G.5)

τyx(y) = µl
∂u

∂y
= Γ(y − h0)− fs (G.6)

where τyx is the shear stress. Note that for fs = 0 the shear stress vanishes at
the liquid-gas interface.
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Appendix H

Excel Simulation Sheets

H.1 Couette Flow
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Chap. H Excel Simulation Sheets Sec. H.2 Poiesuille Flow

H.2 Poiesuille Flow
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Sec. H.3 2D Static Interface Chap. H Excel Simulation Sheets

H.3 2D Static Interface
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Chap. H Excel Simulation Sheets Sec. H.3 2D Static Interface

Bubbles in Microchannels 129



Sec. H.4 2D Bubble in Tube Chap. H Excel Simulation Sheets

H.4 2D Bubble in Tube

As the Excel sheet was to large it has been cut in half as shown in the above
miniature. The two parts are presented in the following.

First Slide :
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Chap. H Excel Simulation Sheets Sec. H.4 2D Bubble in Tube

Second Slide :
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